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Figure 1: 1st and 3rd person perspective of the expert during the machine task instructions in AR.

ABSTRACT

Transferring knowledge across generations is fundamental to hu-
man civilization, yet the challenge of passing on complex practi-
cal skills persists. Methods without a physically present instructor,
such as videos, often fail to explain complex manual tasks, where
spatial and social factors are critical. Technologies such as eX-
tended Reality and Artificial Intelligence hold the potential to retain
expert knowledge and facilitate the creation of tailored, contextual-
ized, and asynchronous explanations regardless of time and place.
In contrast to videos, the learner’s perspective can be different from
the recorded perspective in XR. This paper investigates the impact
of asynchronous first- and third-person perspectives and gaze visu-
alizations on efficiency, feeling of embodiment, and connectedness
during manual tasks. The empirical results of our study (N=36)
show that the first-person perspective is better in quantitative mea-
sures and preferred by users. We identify best practices for pre-
senting preserved knowledge and provide guidelines for designing
future systems.

Index Terms: Extended Reality, Instructions, Asynchronous,
Head-Mounted Display, Machine Task

1 INTRODUCTION

For thousands of years, the transfer of knowledge between genera-
tions has been a cornerstone of human civilization. The invention
of writing, book printing, photography, film, and more recently the
internet have fundamentally changed how knowledge is captured,
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recorded, handed on, and accessed. Despite this evolution of me-
dia, the loss of valuable information over time remains a major chal-
lenge to this day. Especially tacit knowledge, complex procedural
and practical skills like two-handed tasks are challenging to explain
without a present instructor [7] or through simple video streams [8]
that lack direct anchoring to the real world and guiding social cues.

As more people are leaving than joining the workforce, and in-
structing multiple people simultaneously is not effective [42], there
is an increasing need for asynchronous solutions that operate inde-
pendently of a present expert. Future advancements in eXtended
Reality (XR) and Artificial Intelligence (AI) systems promise to
capture the expertise of specialists [11], preserving their viewpoints
and creating tailored, contextually anchored explanations for learn-
ers at any time [10]. Unlike current video-based solutions, such
XR systems can decouple the perspective of the playback from the
recording. This enables users to experience instructions from the
experts’ 1st person perspective (1PP) and various external 3rd per-
son perspectives (3PP). This choice of perspective has practical rel-
evance for learning success: Prior work indicated that for video
tutorials, the 1PP performs significantly better for learning practi-
cal skills than the 3PP [19]. Further, by changing the perspective,
the social connectedness [61] and the feeling of embodiment [34]
can change, and therefore also the productivity and learning expe-
rience in general [2]. Gaze is also an important factor that provides
social cues and information about what someone is currently fo-
cusing on, improving the effectiveness, especially for novice learn-
ers [53]. However, this aspect gets lost in the 1PP, which is why
researchers continued depicting the expert’s head in asynchronous
solutions [55], making it less realistic in a real environment. Other
methods of visualizing the instructor’s gaze have not been explored
in this context. This raises the question of whether the improvement
through 1PP also applies to XR and if additional social indicators
enhance the effectiveness of asynchronous instructions.

In this paper, we explore effective methods for preserving valu-
able knowledge and ensuring its accurate, efficient, and enjoyable
replay. Building on previous work, we examine the impact of differ-
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ent perspectives on learners and the potential benefits of gaze visu-
alizations when following instructions to perform body-coordinated
two-handed tasks. For this, we designed a study in which the par-
ticipants saw and afterward imitated recordings of an expert. In
the user study, we investigate how these factors influence learner
efficiency, sense of embodiment, and social connectedness.

The contribution of this paper is twofold:

1. We contribute the results of a user study exploring the influ-
ence of perspective and gaze visualization on efficiency, sense
of embodiment, and social connectedness for asynchronous
XR instructions.

2. Based on the results, we provide guidelines for the future de-
sign of such systems.

2 RELATED WORK

Our work was based on already made approaches in the fields of
knowledge transfer, synchronous and asynchronous XR, as well as
different perspectives and gaze visualizations. In the following, we
will further describe the research that influenced our decisions.

2.1 Knowledge Transfer
The way we learn has changed over the years through tools like
color, writing, paper, and lately through sound and image record-
ing devices. This transmission of facts or skills between entities is
called knowledge transfer [46]. When it comes to developing prac-
tical skills, spatial information and movement are important [5].
However, Bandura’s Social Learning Theory [3] describes how so-
cial factors can also play a role in knowledge transfer. Here, an
observer learns through a model’s actions and their consequences.
Therefore, demonstrations of an expert are an important first step
to achieving a skill, followed by imitation, practice, and promoting
effective and active learning [7]. Moreover, social connectedness,
as the feeling of belonging and closeness to others, can enhance
the collaborative learning experience [18]. When we go one step
further, taking the perspective of an expert can not only increase
our empathy for that person [61] but also positively influence the
efficiency through the embodiment [2]. These effects also occur
when sharing gaze cues with each other [53], which is helpful dur-
ing two-handed tasks where other social cues such as hand gestures
are difficult to perform. In addition, the style of an instruction can
impact its success, for example, polite and less direct instructions
are especially effective for learners with low prior knowledge or
error-proneness [39]. So not only does the plain understanding of
the other person’s actions affect our learning, but also the feeling
of social connectedness during the process. Three-dimensional and
dynamic XR seems like the most fitting approach to demonstrate
manual tasks. Still, we need a thorough understanding of the social
factors that can influence its effectiveness.

2.2 XR and Time
As we want to investigate which factors could influence the learning
experience of XR instructions, we will further look into previous
synchronous and asynchronous approaches for knowledge transfer.

Synchronous XR is used to gather people from different ge-
ographical locations at the same time. According to Schäfer et
al. [47], these applications can be categorized (among others) as
Meeting, Design, and Remote Expert. Over the next few years,
the last category will become increasingly important as an aging
population and growing technological advances mean that skilled
workers will not always be available on-site.

In the field of telepresence, a considerable amount of research
is being done to create the feeling for users of being in the same
place as an expert. This involves not only making the exchange
as close to reality as possible through the blending of multiple

spaces [27], robotic extension [45], tangible [57] and virtual ob-
jects [41], but also preserving the most important aspects of their
instructions by enhancing them with notifications [13], annota-
tions [17] or cues [21]. While these approaches are valuable, they
reach their limits when faced with excessive demand, as in this sce-
nario, an expert can act independently of location but not of time.
As a result, the associated workload can lead to the expert being
overburdened [42]. In addition, unique knowledge potentially gets
lost with the expert. For this reason, researchers and industry also
explore sustainable and time-independent solutions.

Asynchronous applications make information available anytime
by preserving data. Comments [32], recorded actions [11], and tu-
torials [38] allow for reviewing explanations and make knowledge
more accessible through distribution and exchange. Thereby, asyn-
chronous solutions can even outperform synchronous ones in these
settings [56], as confusing information can be avoided. However,
no follow-up questions can be asked if the expert is no longer avail-
able. Especially in this case, asynchronous XR implementations
have gained attention in the craft and technical context in recent
years, as they can alter reality and, due to their three-dimensional
nature, perform better in explaining practical knowledge compared
to manuals [38] or video tutorials [55]. For this reason, research is
being conducted to improve the XR knowledge transfer by adding
wearables operating as sensors to capture the interaction with phys-
ical objects and as additional feedback [35]. Diverse playback op-
tions [10] optimize the arrangement of the individual task, mini-
mize the chance of forgetting steps, and can affect co-presence in
combination with the visualization of the instructor [55]. Different
notifications [37], annotations, and XR technologies [12] help to
focus and give additional information. Still, research on the body-
related and social aspects of instructions that are crucial for prac-
tical learning and how they can be transferred and visualized for
asynchronous XR is limited. This results in the question of how
to present virtual experts while preserving the valuable elements of
in-person demonstration.

Hybrid solutions also exist using synchronous and asyn-
chronous technology where experts can record and stream XR in-
structions [40] or work on simulations [15] at different but also at
the same time. In the following, we will refer to asynchronous ap-
plications due to the specific use case, but we will not exclude that
the results can also be used for synchronous developments.

2.3 Visualization

As outlined above, we saw that current synchronous and asyn-
chronous research mostly pays attention to the technical aspects of
explanations and less to the social and emotional components that
impact the experience. We learned that factors such as demonstra-
tion and imitation, but also embodiment and social connectedness,
play an important role in learning success and can offer additional
value if applied correctly. By changing the perspective and provid-
ing gaze cues for the learner, these aspects can be influenced. In the
following, we will discuss these factors in more detail.

Perspective change is a commonly used tool in video production
to get into a different viewpoint. 2D tutorials and vlogs change the
camera angle to see what another person sees, the so-called 1PP.
This perspective outperforms the 3PP in practical instructions [19].
However, the effectiveness of this approach is also dependent on
the learners’ handedness [30]. As perspective is rather a continuum
in the three-dimensional space [25], research has explored different
viewpoints for asynchronous [55] Virtual Reality (VR) and syn-
chronous XR usage [9]. When it comes to embodiment, the feeling
towards the body can change with the switch from 3PP to 1PP, but
even in 3PP, there is still a feeling of embodiment possible [34].
This feeling of embodiment while being in the 1PP of an expert can
help to achieve better performance [2] and connection towards the
other [61]. When we look at already implemented asynchronous
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VR instructions, reduced ghost/shadow or solid instructor visual-
izations are used to preserve the orientation of the expert. Thanya-
dit et al. [55] compared these to videos with different viewpoints,
whereby some participants even tried to take on the instructor’s per-
spective in the shadow variant. This leads to the participant get-
ting confused because of the overlapping of virtual objects. Syn-
chronous Augmented Reality (AR) research has already explored
displaying the students’ actions in 1PP or 3PP to the expert [52]
while asynchronous AR work varied different visualizations of the
3PP instructor [8], implemented a ghost 1PP visualization [22], or
only the tools’ movement in the recordings [10]. This means we
have not found research using the experts’ asynchronous 1PP and
comparing it to 3PP in AR. However, the previously described re-
search shows that perspective has an important influence on how
well we can understand manual explanations. While 1PP gives us
a better view and feeling towards a task, the 3PP visualizes more
important cues, showing the instructor’s attention. It is therefore
unclear how these findings generalize to our use case.

Gaze is an important social cue influencing memory, atten-
tion [14], sense of being together, and communication [44]. Ad-
ditionally, it can also indicate future actions [63] of a person and
remains available when both hands are in use. Gaze can be divided
into eye and head gaze, with eye gaze showing the focus of the eyes
and head gaze visualizing the direction of the head. While head
gaze is slower and not as precise as eye gaze, it is easier to measure
as it needs less technology, less workload, calibration, and signals
higher interest [49]. Moreover, if the position of the head is not
fixed, the eye gaze also depends on the direction of the head to track
the focus in the environment [50]. For joint gaze, the synchronously
shared gaze of an expert can improve the learner’s effectiveness, es-
pecially for novices, conveying content-related and procedural in-
formation for visuospatial tasks [53]. Additionally, research shows
that the gaze of an expert is more focused compared to a novice
one while solving a task [60]. XR developments use gaze cues for
analysis [51] and the adaptation of virtual tutors [31]. Gaze can
be depicted for small focus areas with dots [53] and beams [44] as
they mainly display one specific point. Larger gaze areas like head
gaze can be visualized with cones [44] and pyramid frustums [44].
For both and shared gaze in particular ovals [4], circles [28], tra-
jectory, highlights, and spotlights [62] are used. Circular cursors
are the most common option for all kinds of areas, and for example
also used as simplified cone frustums on 2D surfaces [4]. When it
comes to social factors, synchronous XR head-based [44, 4] as well
as eye-based cues can enhance collaboration and social connected-
ness [28]. Still, we could not find research on the influence of gaze
visualizations on the social aspects in asynchronous XR instruction
scenarios, nor between 1PP and 3PP for XR in general.

In summary, current research highlights the role of social and
embodiment factors, emphasizing the importance of demonstra-
tions, social connectedness, and cues in knowledge transfer. XR
technologies offer synchronous and asynchronous methods for en-
hancing practical instructions. While asynchronous approaches
provide flexibility and accessibility, the social and emotional as-
pects are often overlooked. In particular, visualization techniques,
such as perspective shifts and gaze cues, seem promising for im-
proving understanding and engagement, still their application in
asynchronous XR, especially AR, remains limited. Bridging these
gaps can enhance the effectiveness of future knowledge transfer.

3 METHODOLOGY

Previous work demonstrated that asynchronous XR instructions can
support explanations that need to be delivered effectively and accu-
rately, regardless of time. However, our analysis of related work
revealed that the influence of perspective and important social in-
dicators, such as gaze cues in AR, has not yet been thoroughly in-
vestigated. Following the work in related areas, these aspects can

Figure 2: 1PP and 3PP perspective as well as none, eye and head
gaze conditions during the asynchronous two-hand machine task
instructions in AR.

improve productivity and the learning experience in synchronous
scenarios and other media. In addition, switching to another per-
son’s perspective also changes factors such as the embodiment and
social connectedness to that person, which in turn impacts the learn-
ing outcome and experience. This emphasizes the importance of
the question of how these aspects influence each other during asyn-
chronous XR, especially AR instructions. With the approval of
an ethics committee, we investigated these factors and conducted
a user study to answer the following research questions:

RQ1 How does the perspective affect the efficiency, embodiment,
and social connectedness during asynchronous instructions of
two-handed manual tasks?

RQ2 How does the gaze affect the efficiency, embodiment, and so-
cial connectedness during asynchronous instructions of two-
handed manual tasks?

RQ3 Are there interaction effects between the perspective and gaze
on efficiency, embodiment, and social connectedness during
asynchronous instructions of two-handed manual tasks?

3.1 Study Design
To answer these research questions, we designed a user study with
the perspective and gaze cues of the asynchronous instructor as the
independent variables. For the first independent variable perspec-
tive, we varied the two levels 1PP and 3PP of the instructor to
analyze the influence on efficiency, embodiment, and social con-
nectedness (Figure 1). For the second independent variable gaze,
we investigated the effects of the three levels none, head, and eye
gaze on the above-mentioned aspects. We varied both independent
variables in a within-subjects design with a total of 2×3 = 6 con-
ditions (Figure 2) and counterbalanced the order using a balanced
Latin square.

3.2 Task
To evaluate the efficiency of the imitations precisely, we designed
the task based on other asynchronous XR publications that used
a machine interface [8, 35]. In addition, we decided on body-
coordinated tasks to have a suitable and dynamic use case for the
different gaze visualizations. Each interaction involved both the
left and right hands during an explanation step. With a focus on
only the demonstration and imitation as the crucial initial phases of
learning, as well as the visual aspects of the explanations, the vir-
tual expert showed a task to the user on an interface. The user then
had to repeat the interaction after the animation ended. Depending
on the condition, the instructor was visualized in 1PP with only the
hands or in 3PP with the whole body. During the animations, the
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Figure 3: Arrangement of the individual elements on the machine
interface consisting of the same amount of pins, buttons, sliders,
knobs, control switches, wheels, and levers on both sides, as well
as a shift and stop button in the middle.

users had to change their position either to where the expert is lo-
cated (1PP) or beside the expert (3PP). In 3PP, the user had to go
to the position of the expert after the animation ended to start the
interface interaction. This is the same process as if a real person
were present on-site, giving machine interface instructions and af-
terward handing over to the learner. Depending on the condition,
the system added none, eye, or head gaze cues to potentially give
additional guidance during the explanation.

We based parts of the study design and the machine interface
on the work of Cao et al. [8] and added additional elements that
are common in music production, electrical engineering, crafts-
manship, cars, and airplanes. Therefore, we implemented multi-
ple elements: 8 buttons, 4 switches, 2 levers, 4 knobs, 4 sliders,
2 wheels, and 4 pin sockets, including 2 pins, which we mounted
mirrored on the left and right of a vertical wood panel. To make
them more reachable, we added 1 shift and a stop button in the top
middle of the panel that the users had to press after finishing a run.
The construction is shown in Figure 3. We designed a sequence of
12 different element combinations for both hands (1:switch-knob,
2:button-shift, 3:slider-slider, 4:button-wheel, 5:pin-switch, 6:shift-
wheel, 7:knob-slider, 8:lever-lever, 9:pin-button, 10:switch-shift,
11:pin-knob, 12:wheel-lever) that included every element type 3
times. To avoid learning effects, we repeated these 12 combinations
6 times using different values and elements from the same element
type to keep the 6 conditions comparable. This results in a total of
12× 6 = 72 combinations. While only varying the order of our 6
conditions, the 72 sequences, values, and elements stayed the same
for every participant. For example, a participant experienced the
first animation in a combination of the first switch on the left, the
knob on the bottom right, 1PP, and none while the next participant
also had to interact with the same switch on the left and knob on
the bottom right first, but sees the 3PP and head condition instead.

3.3 Dependent Variables

To answer the research questions, we collected data using the log-
gers of the machine interface, videos, quantitative and qualitative
questionnaires, as well as conducted interviews, resulting in the fol-
lowing dependent variables during each condition:

Accuracy: The value of successfully completing the task, mea-
sured by logging all the machine interface’s electronic parts and re-
viewed by two authors through the recorded videos. We used differ-
ent criteria for estimation, like the correct value adjustment, correct
element order, correct hand usage, and the combined overall correct
execution. For elements with continuous values, we measured and
calculated the boundary between two setting options, resulting in
reference areas for the correct value adjustment. Additionally, we
estimated the correct hand usage through the video material.

Task Completion Time: The time the participants needed to
complete the task, calculated with the logger data in two ways using

Figure 4: Step sequences of the user during the different perspec-
tives (left) and visualization of the blue gaze cues of the AR expert
(right). The cross on the floor marks the standing position of the
user while watching the instructions.

the beginning of the animation (B-S) or the first interaction with the
machine interface (E-S) as the start and pressing the stop button as
the end input. We further estimated if participants waited to start
the task before the animation ended (Patience).

Mental Load: An efficiency influencing factor evaluated using
the RAW (NASA-)TLX [23] (21-point Likert scale, 0: Very Low,
20: Very High).

Task Difficulty: The manual tasks’ difficulty that influences
the efficiency using the Single Ease Question (SEQ)(7-point Lik-
ert scale, 1: Very Difficult, 7: Very Easy).

Social Connectedness: The feeling towards the instructor us-
ing the Inclusion of Other and Self (IOS) [1] (7-point Likert scale
visualized through circles with 1 being not at all close and 7 be-
ing extremely close) to evaluate the perceived closeness to the in-
structor as well as the Game Experience Questionnaire Social Pres-
ence Modules Empathy (GEQ-SPM-E) and Behavioural Involve-
ment (GEQ-SPM-BI) components [26] (5-point Likert scale, 1: not
at all, 5: extremely).

Embodiment: The feeling of embodiment towards the virtual
expert using the short Avatar Embodiment questionnaire [43] (7-
point Likert scale, 1: Strongly disagree, 7: Strongly agree).

Instructions: Our own questions about how the participants per-
ceived the instructions (7-point Likert scale, 1: Strongly disagree,
7: Strongly agree).

Performance: Our own questions regarding the participants’
and instructors’ performance (7-point Likert scale, 1: Strongly dis-
agree, 7: Strongly agree).

Additionally, we wrote notes and also gave the opportunity to
leave written comments at the end of the questionnaire after each
condition. The semi-structured interview after the main study re-
volved around the elements, perspective, gaze cues, instructions, in-
structor, task difficulty, and general suggestions. We used a mixed-
methods approach to get insight into the experiences of the partici-
pants, especially regarding embodiment and social connectedness.

3.4 Apparatus
Based on these considerations, we designed a machine interface
and an AR application. We build the interface using a 3D printer,
jigsaw, laser cutter, drill, milling machine, soldering iron, and hot
glue. To measure the interactions of all elements except the shift,
we used sensors like buttons, switches, sliders, rotary encoders, and
potentiometers. We coupled these to an Arduino Mega ADK con-
nected to a PC. The industrially produced shift was linked directly
to a PC without an intermediate microcontroller. To implement the
loggers, we used the Arduino IDE and Python.

Further, we created the AR application with Unity. For the ex-
pert, we decided on a full-body realistic avatar, which was the
most fitting for the embodiment and social connectedness evalu-
ation while blending in with the environment. Using Character
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Creator 4 for the avatar, we emphasized friendly features, detailed
hands, a complete face, and body rigging as well as elaborated
blend shapes. With the study supervisor identifying as female, we
decided on a male-looking character to keep the experiment more
diverse. In addition, the full-body avatar was also rated high, es-
pecially for body-coordinated tasks in previous asynchronous AR
works [8]. Using an avatar made it possible to capture the head and
eye gaze with the Head-Mounted Display (HMD) compared to vol-
umetric videos. The instructor avatar wears a craftsman’s overall
as the clothing can influence the personality perception, including
competence or achievement [33].

We recorded the avatar interaction and gaze with the Meta Quest
Pro using the positional and rotational data for the head gaze, the
eye tracking feature for the eye gaze, as well as the inside-out body
and hand tracking. Due to the lack of asynchronous XR gaze cue re-
search, we decided on a blue circular cursor [29, 44] for both cues
with each having a different size, to keep the design of the gaze
cues consistent and comparable to synchronous related work. For
the head gaze we estimated and prior tested the size of the circle
using the maximum 106° horizontal field of view of the record-
ing HMD as reference for our calculations [44, 49] to make them
visible, less irritating, not cover elements, the eye gaze cues more
comparable, and include all the perceived elements of the instructor
as the eye-head coordination can highly vary between people [50].
With an average distance of 30 cm between the expert and the ma-
chine interface, this leads to a diameter of approximately 80 cm.
For the eye gaze cue, we used a diameter of 15 cm to not obscure
the focused elements during the animation and symbolize the joint
viewing state of the participant and instructor [29]. As the virtual
avatar can not change the real environment, we created digital twins
in green for each element and fitted them to the avatar recordings.
These are often used in remote applications [41] to make the ex-
planations more realistic and clear. Additionally, the length of each
animation was normalized between the 6 conditions to an average
length of 6.92 seconds per animation so that they are more com-
parable [8]. We added real markers on the floor to label the two
positions the participant has to take, depending on the condition, in
combination with virtual ones that showed the current location to
stand during the animation. Visualizations of the position change
and the gaze cues are shown in Figure 4.

For the study, we used the Meta Quest 3 due to its clearer pass-
through and kept it always connected to a PC for study control and
panel element adjustments. This was necessary because, at the time
of the study, the HMD only allowed semantic classification labels
like room architecture and furniture. An anchor near the panel was
adjusted before each run.

In order to measure the dependent variables’ accuracy and task
completion time, we recorded the timestamp in ms, the value, and
the element name if the value of a machine part changed. We also
logged when an anchor was set in AR, the supervisor pressed the
next animation start button on the PC, the animation ended, or the
animation was replayed. In addition, we recorded videos of the
interface during the study, which we used to verify the variables and
estimate if the participants used both hands during the interaction.

3.5 Procedure

After welcoming the participants, we introduced them to the
concept and asked them to fill out a consent form and a pre-
questionnaire including demographic data and prior knowledge.
After they put on the glasses, we started the application and jointly
adapted the virtual machine elements to cover the real ones.

To begin the first condition, we guided the participants to one
of the virtual markers on the floor and started the first animation as
soon as they were ready. After the animation ended, the participants
should, depending on the condition, go to or stay in the position of
the virtual expert. They could then start adjusting the elements fol-

(a) Accuracy (b) Correct Hand

Figure 5: Bar chart of the Accuracy by perspective (a) as well as bar
and interaction charts of the correct hand by perspective×gaze (b).
The error bars indicate the standard error.

lowing the example of the virtual instructor. By pressing the stop
button and saying that they completed the task, the participants sig-
naled the end of the step. If an element was set incorrectly that was
used later on in the condition, we asked the participants to correct
it and push the stop button again. We then started the next anima-
tion by using the keyboard on the computer. This process happened
a total of 12 times before the participants took the HMD off and
answered a questionnaire about the condition on a PC. This break
reduced the risk of them getting cybersickness. After the partici-
pants finished the questionnaire, the whole process started again in
the same sequence with different conditions, elements, and values.

After the participants completed all 6 conditions, we conducted
a short interview about their experience, which we audio recorded.
Each experiment took about 80 minutes per participant.

3.6 Participants
We recruited 36 participants (19 male, 16 female, 1 non-binary),
aged between 19 and 68 (Mean = 31.31, SD = 13.28). 33 of the
participants were right- and 3 left-handed, while the height var-
ied between 1.57 m and 1.93 m. Among the participants were 26
students, two designers, two managers, one editor, one architect,
one care worker, one former recruiter, one secretary, and one social
worker. All participants voluntarily took part in the study and got
reimbursed 10C per hour or study points.

3.7 Analysis
We analyzed the study data using Linear Mixed-Effects Models
(LMM) and tested them for normal distribution using Quantile-
Quantile (Q-Q) plots by Wilk and Gnanadesikan [58]. If the data
showed no normality, we performed an Aligned Rank Transfor-
mation (ART) as proposed by Wobbrock et al. [59]. Further, we
analyzed count values with generalized linear mixed models TMB
(glmmTMB) as described by Brooks et al. [6] in combination with
Poisson regression model. For an estimate of the mean response
for normally distributed data, we report the Estimated Marginal
Mean (EMM) by Searle et al. [48] using the Bonferroni correction.
If the data showed no normality, we performed post-hoc tests by
Elkin et al. [16]. For all plots, we highlighted significant differ-
ences (∗∗∗ : p<.001, ∗∗ : p<.01, and ∗ : p<.05).

4 RESULTS

In the following, we report the results of our controlled user study
to answer our research questions. In the pre-questionnaire, the par-
ticipants rated their prior experience with AR (Median = 3), HMD
(Median = 5), and machine interfaces (Median = 5) on a 7-point
Likert scale, with 1 having no experience and 7 being an expert.

4.1 Accuracy
We determined the accuracy by analyzing the participants’ correct
value adjustments, element order, and hand usage. The analysis
using ART shows that the perspective influences the correct order
(F1,2551 = 31.43, p<.001), value of the elements (F1,2551 = 19.25,
p<.001) as well as the hand (F1,2551 = 615.45, p<.001) resulting
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(a) Time in s (b) Patience (c) Patience (d) Patience

Figure 6: Bar chart of the Task Completion Time by perspective (a)
as well as bar and interaction charts of the Patience by perspec-
tive (b), gaze (c) and perspective×gaze (d). The error bars indicate
the standard error.

in an effect on the overall correctness (F1,2551 = 147.80, p<.001)
with 1PP being the better option as can be seen in Figure 5a. Ad-
ditionally, we found an effect between perspective and gaze for the
correct hand (F1,2551 = 3.31, p<.05) with the post-hoc test showing
a significant effect between (1PP, none) and (3PP, head) (p<.05)
with the first one being more accurate (see Figure 5b).

4.2 Task Completion Time
We assessed the Task Completion Time in two ways: the beginning
of the animation until the press of the stop button (B-S) and the first
interaction with a machine element until the press of the stop button
(E-S). Additionally, we tracked the Patience of the participants and
wanted to replay the instructions, as these could influence the in-
teraction length. The ART analysis shows that the perspective sig-
nificantly affects both the B-S (F1,2551 = 106.69, p<.001) and E-S
(F1,2551 = 5.25, p<.05) with the time being higher in the 3PP for the
B-S and higher in the 1PP for the E-S as can be seen in Figure 6a.
Further, the analysis using ART shows that the perspective influ-
ences the Patience (F1,2551 = 522.06, p<.001) with 3PP being the
more patient one (see Figure 6b). Also, the gaze affects the earlier
interaction (F1,2551 = 3.11, p<.05) with the post-hoc test confirming
that the participants were more patient in the head compared to eye
condition (p<.05) (see Figure 6c). Moreover, the analysis shows
interaction effects of perspective and gaze on the Patience (F1,2551
= 3.24, p<.05). The post-hoc test reveals that (1PP,eye) was the
more impatient condition in comparison to (3PP,head) (p<.01) or
(3PP,eye) (p<.05) as can be seen in Figure 6d. The results of the re-
played animations showed no significant differences (Mean= 0.04)
using glmmTMB.

4.3 Mental Load
In order to measure the mental load, we used the Raw TLX using
ART. The results show a significant effect on the Raw TLX for the
perspective (F1,175 = 8.14, p<.01) with 1PP being less mentally
demanding than 3PP (see Figure 7a). Further, the gaze also signif-
icantly affects the Raw TLX (F1,175 = 6.73, p<.01). The post-hoc
tests reveal a significantly higher mental load for head than for none
gaze (p<.01) as can be seen in Figure 7b.

4.4 Task Difficulty
The task difficulty was estimated through the SEQ using ART. The
analysis shows that the perspective affects how easy the task feels
(F1,175 = 3.93, p<.05) with 1PP being higher rated, which means
that it is perceived as easier by the participants (see Figure 8).

4.5 Social Connectedness
To evaluate the users’ feeling of social connectedness to the instruc-
tor, we used the IOS scale as well as the GEQ-SPM-E and GEQ-
SPM-BI components. The analysis shows that the perspective ef-
fects the IOS (F1,175 = 52.77, p<.001) with the participants feeling
closer to the expert in the 1PP than in the 3PP as can be seen in

(a) Raw TLX (b) Raw TLX

Figure 7: Bar charts of the Raw TLX scores by perspective (a) and
gaze (b). The error bars indicate the standard error.

Figure 8. For the GEQ-SPM-E (Median = 0.83) and GEQ-SPM-
BI (Median = 2), we detected no significant effects using ART.

4.6 Embodiment
To assess the embodiment, we used the short version of the Avatar
Embodiment questionnaire, consisting of four categories that are
calculated to the overall Embodiment. The analysis indicates that
the perspective influences the Appearance (F1,175 = 9, p<.01), Re-
sponse (F1,175 = 5.49, p<.05), Ownership (F1,175 = 29.5, p<.001),
Multi-Sensory (F1,175 = 13.50, p<.001), and the overall Embod-
iment (F1,175 = 19.66, p<.001) with 1PP leading to higher re-
sults (see Figure 9a). In addition, we used ART for the Multi-
Sensory category which shows significant effects between perspec-
tive and gaze for the Multi-Sensory category (F1,175 = 3.12, p<.05).
The post-hoc tests reveal that (1PP, eye) was rated higher than
(3PP, eye) (p<.01) and (3PP, head) (p<.01). Also the partici-
pants feel more Multi-Sensory embodiment for (1PP, head) than
(3PP, eye) (p<.05) or (3PP, head) (p<.05) (Figure 9b).

4.7 Additional Questions
Furthermore, the participants answered questions regarding the in-
structions and performance after each condition.

Instructions: The results show that the gaze influences the will-
ingness to use the interactions frequently (F1,175 = 3.35, p<.05).
The post-hoc test confirms a significantly higher rating for none
compared to head gaze (p<.05). When we look at the ART analy-
sis of the question “I understood the instructions.” the perspective
has significant effects (F1,175 = 4.23, p<.05) with 1PP being rated
higher. For the question ”I liked the instructions” we could not ob-
serve any significant effects (Median = 6) using ART.

Performance: The analysis using ART shows that perspective
has significant effects on the feeling of the participants on success-
fully completing the task (F1,175 = 5.64, p<.05) with 1PP being
graded higher than 3PP. In addition, the ART analysis shows no
effects on the question about the instructor “I thought the other per-
formed well.” (Median = 6). All significant differences can be seen
in Figure 10.

4.8 Interviews
After the study, we interviewed the participants about their expe-
riences in a semi-structured procedure while recording them. We
then transcribed the audio and categorized the results. In the fol-
lowing, we report our findings.

For the perspective that the participants liked the most, 69.4%
stated they prefer the 1PP, 25.0% the 3PP, and 5.6% were indiffer-
ent. The participants noted that the 1PP was easier (33.3%), less
distracting (13.8%), felt more connected (2.7%), had better graph-
ics (2.7%) and view (58.3%), or that they only paid attention to
the hands anyway (2.7%). 8.3% mentioned that the 1PP felt like
a game. Others stated that the 1PP felt uncanny due to different
hand features (2.7%), that they disliked that the 1PP floating hands
felt like body fragments (5.6%), that it was hard to see the whole
board in 1PP (8.3 %), or that after experiencing the 3PP the 1PP
felt like the body of the instructor was in front, in or behind their
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Figure 8: Likert charts of the SEQ and IOS show the percentages
of responses by perspective.

own body (16.6%). For some, the 3PP was more familiar (22.2%),
comfortable (8.3%), and easier to predict (2.7%). Of the partici-
pants, 36.1% did not like that, especially in 3PP, seeing is harder.
2.7% perceived the 1PP and the 3PP as two separate entities.

Regarding which gaze the participants liked the most, 30.6%
said none, 25.0% eye, 19.4% eye and head, 5.6% only head, and
19.4% were indifferent, with 71.4% not focusing or 28.6% not
noticing any gaze cues. 33.3% liked the gaze guidance and other
30.5% perceived the gaze as distracting. 13.8% did not notice a
difference in gaze size, and 5.5% first thought the cues represented
their gaze, reporting that the cursor was lagging. Of the partici-
pants (33.3%) liked the precise guidance of the eye and thought it
was helpful and memorable (13.8%), while 5.6% described the eye
as stressful and distracting (2.7%). 11.1% liked the head, as it en-
closed both active elements and was not stressful (2.7%). 25.0%
described the head as not focused, confusing, and useless, as there
were too many elements within the circle as well as distracting
(5.6%).

In combination with the 1PP, 33.3% favored none, 11.1% eye,
11.1% head and 16.6% were indifferent about the gaze cue. For
3PP 8.3% liked the connection with none, 5.6% with eye, and 5.6%
with head the most. 2.8% preferred the 3PP and were indifferent to
the gaze. Further, 16.6% reported they only focused on the hands
and the green elements.

All participants described the instructions as well-made, clear,
and easy to copy. 16.6% liked the pace of the tasks, 13.8% the
length of each step, 11.1% the haptic feeling, and 2.7% the resem-
blance to real machine interfaces. Of the participants, 22.2% re-
ported they liked the green element highlights, with 8.3% approv-
ing that the green elements did not immediately disappear after the
animation to memorize the settings, and 8.3% stated that they pre-
ferred the AR instructions to paper or audio instructions. Still, they
disliked the fixed position during the instructions (2.7%) and that
there was no audio (2.7%).

When asking the participants about the instructor, 63.8% said
that they liked the natural visual appearance. Also, they stated that
the expert made clear what to do (8.3%) and seemed competent
(5.6%). 5.6% perceived the hands of the instructor as good-paced,
2.7% as easy to mimic, and 2.7% as not disturbing. On the one
hand, the participants said the hands performed realistically (8.3%),
and on the other, no realistic movements (11.1%). Additionally,
they stated that the hand size obscured the view (2.7%) and sug-
gested using transparent hands (2.7%). 25.0% of the participants
said that the visual appearance of the instructor does not matter,
with overall 22.2% not paying attention to the instructor. 11.1%
reported that the avatar did not look real. 2.7% felt annoyed by
the instructor feeling like a real person but not interacting like one,
and 2.7% missed the interaction with the expert. 2.7% felt uncom-
fortable as the avatar was something they could not control. 13.8%
would not change the current visual appearance of the expert, and
2.7% recommended an avatar resembling the study conductor, so it
feels more like a real person. 19.4% did not connect with the in-
structor emotionally. 5.6% of the participants did not see a resem-

(a) Embodiment (b) Multi-Sensory

Figure 9: Bar chart of the Embodiment subcategory scores by
perspective (a) as well as bar and interaction charts of the Multi-
Sensory score by perspective×gaze (b). The error bars indicate the
standard error.

blance to the avatar, and 5.6% would identify more with a woman,
or 2.7% with themselves. For 5.6%, the choice of avatar depends
on the purpose, and 2.7% would recommend different avatars for
each condition to make the interaction more interesting.

For the task difficulty, 72.2% of the participants described the
task as easy and 27.7% as medium difficult. The most challeng-
ing aspects included: two simultaneous actions (19.4%), memoriz-
ing details (13.8%), bad view (16.6%), distracting circles (11.1%),
gauging the distance (2.7%), and locating themselves in the room
(2.7%). Except for the plug task, the participants described as most
difficult choosing the right switch (5.6%) or button (13.8%), setting
the knob, (13.8%), slider (2.7%), lever (2.7%) and the shift (8.3%)
position as well as counting the rotations of the wheel (8.3%) and
pressing the stop button (2.7%). 2.7% of the participants did not
know at the beginning which aspects to focus on. While some felt
more uncomfortable and stressed after each condition due to the
weird feeling of the 1PP and time pressure (5.6%), some felt calmer
with the tasks getting easier as they got more confident over time
(8.3%).

The general suggestions included 94.4% of the participants ex-
pressing positive feelings regarding the study, as they had fun and
were interested, while the others were neutral. Participants sug-
gested including feedback if they did the task right (11.1%), adding
more expressions to the avatar (5.6%), and audio (8.3%). 8.3% dis-
liked the current state of the AR pass-through, and 2.7% the green
element alignment. 2.7% wish for a bigger field of view, and 5.6%
wish to directly follow along with the instructor. 13.8% of the par-
ticipants mentioned, without us asking, that they want to use the
system to train new employees, or even themselves, for example, to
learn to drive. 2.7% liked that there is no need for a real person.

4.9 Qualitative Notes

In addition to the interviews, we also gave the participants the pos-
sibility to write comments at the end of each questionnaire page
while taking notes during the study. Regarding the comments, the
participants also mentioned the bad view either in 1PP or 3PP, as
well as that the head cue was distracting due to its size. We noticed
during the study that some participants seemed surprised the first
time watching the instructions, especially in 3PP. One participant
even tried to greet the 3PP instructor and seemed disappointed after
not receiving a response. In the 3PP, participants were careful with
the HMD cable when moving positions, crouched down, or stood
on their tiptoes to see the right hand of the instructor. Moreover,
in the 3PP, some participants interacted with the machine interface
while walking. For three participants, we had to restart the appli-
cation during a condition because the HMD had AR pass-through
issues by distorting the view. In these cases, we repeated the last an-
imation step and deleted the incomplete data. In general, it seemed
important to the participants to correctly complete the task.
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Figure 10: Likert charts of the additional questions show the per-
centages of responses by perspective and gaze.

5 DISCUSSION

The results of our study provide strong evidence that the perspec-
tive on an expert’s actions in asynchronous AR influences how suc-
cessful, relaxed, and self-confident we perform manual tasks. Re-
garding RQ1, the findings indicate that the perspective impacts the
efficiency, embodiment, and social connectedness with 1PP per-
forming better than 3PP and is preferred by more users. About
RQ2, the empirical results show that in this study setting gaze cues
can not enhance efficiency, embodiment, and social connectedness
during asynchronous visual-only AR instructions, indicating that
adding head gaze cues can improve Patience compared to eye gaze
but also mental load in contrast to using none cue. In addition, we
observed interaction effects between perspective and gaze (RQ3)
for correct hand usage, Patience, and Multi-Sensory embodiment.
In this section, we will further discuss our findings.

5.1 Asynchronous Perspective Matters

Related work showed that 1PP, especially in video production, has
advantages in explaining practical tasks. Our work also confirms
this finding for asynchronous AR instructions. The 1PP achieved
in all accuracy categories the highest results as it was better un-
derstood, leading to a feeling of increased performance. A reason
could be the less obscured view on the interface [55], the higher so-
cial connectedness to the instructor and embodiment [2] compared
to the 3PP. Also, in 1PP, the participants were faster when looking
at the time between the beginning of the animation and the pressure
of the stop button, as they had direct access to the interface, with
some even beginning to interact with it before the animation ended.
In the 3PP, people always need to move or turn their heads to see
the instructor’s actions. This does not mostly apply to the 1PP as
the user and the expert are in the same position. While the individ-
ual time differences are small, they become relevant for repeated or
multiple task steps. When analyzing only the time the participants
interacted with the machine interface, the 3PP was faster than the
1PP, which could have influenced the accuracy, as taking less time
to conduct a task can lead to more errors [20]. We told the partic-
ipants at the beginning of the study to execute the instructions ex-
actly as the expert did. Despite this, in the 3PP, some participants
operated the tasks while walking, leading to less accurate imitation,
more mistakes, and increased usage of only their dominant hand.
This resulted in a lower task completion time with the interface
as they focused less on the right order. In addition, we measured
that 1PP was less mentally demanding than 3PP, which also influ-
ences the efficiency. This aligns with related work as fewer men-
tal manipulations like spatial rotation and perspective taking [54]
are required in the 1PP than the 3PP, leading to reduced mental
load. While measuring the efficiency is important, we paid particu-
lar attention to the participants’ feelings during the interaction: The
participants stated that the 1PP felt easier and more understandable.
Still, for some, this visualization felt unnatural compared to the full-
body avatar and even frightened participants to the point where they

felt more pressure throughout the study due to unfamiliar floating
hands. The resulting feeling of the expert standing right behind
can impact the ability to remember [36]. This raises the question
for future work if other 1PP visualizations for AR would feel more
pleasant while maintaining or even enhancing our measured results.
As we only evaluated the 1PP during a short amount of time, we
need to conduct further research on the long-term influences of us-
ing this visualization type. Throughout this study, we learned that
taking the 1PP of an expert can improve performance in practical
tasks in asynchronous XR scenarios. However, as this is a newer
type of visualization of an instructor and can therefore appear unfa-
miliar or creepy, special emphasis should be paid to the individual
preferences of the users. Future developments should therefore give
the option to switch between perspectives or alter the appearance of
the instructor. Further, implementations should be designed near
the task without unnecessary elements obstructing the view.

5.2 Gaze Cues can Distract

Interestingly, because we did not tell the participants about the gaze
cues beforehand to not influence the results, many did not use or
notice the gaze visualizations of the expert. Still, the head cue in-
creased mental load compared to none gaze with the circle being
too far away from the point of interest, resulting in the participants
favoring the none cue more frequently than the head. This is con-
trary [4, 44] to synchronous XR studies using similar cues, indi-
cating that the results depend on the time aspect and task. These
studies used gaze cues for collaborative analysis and visual tasks,
instead of manual instructions. Therefore, choosing another task
could lead to different results. More often, the participants used
only one hand for head in combination with 3PP than for none in
the 1PP condition, as the mixture of a bad view, movement, and en-
hanced mental load led to the forgetting of the hand sequence. As
the eyes move faster and more unsteadily than the head, the expert’s
eye visualization behaved accordingly, leading to impatience of the
participants. Still, the interviews show that the eye was more liked
than the head as it focused on the important areas. Also, the gaze
cues improved the Multi-Sensory feeling in the 1PP compared to
the 3PP while it stayed nearly the same in the none condition. Half
of the participants preferred the gaze cues, showing that there could
be further influencing factors.

During the study, we used the circular gaze cues as they were
suitable for both eye and head gaze, while being a good intermedi-
ate between visibility and unobtrusiveness. Nevertheless, we won-
der if other gaze visualizations could be designed more suitable for
this scenario. The location of the gaze cues was on the panel to
not cover elements and therefore showed no three-dimensionality,
which could potentially be optimized by using, for example, beams
for the eye gaze. Moreover, we believe that the high visual load dur-
ing the tasks may be responsible for the results. Future work should
therefore use smaller and less unsteady cues that still do not cover
important elements. Moreover, related work showed gaze cues of-
ten in an auditory context [44, 4], leading to the question of whether
combining them with other modalities could improve the outcome.
Additionally, as the gaze behavior depends on the skill level, ad-
justing the cues to the user’s skill could optimize performance.

5.3 Missing Social Response

During in-person instructions, the expert gives feedback on what
is done correctly and which aspects could be improved, helping to
better reflect on the performance. Even though the majority of par-
ticipants perceived the avatar as realistic, had fun, liked the task
and the system, and some even already wanted to use it to learn
skills in the future, a downside was the instructor’s inability to re-
spond explicitly or implicitly to participants’ actions. This led to
disappointment and influenced the perception of the asynchronous
expert. Another factor is the difference between getting advice from
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someone well-known, briefly known, or a stranger being presented
as an avatar. Although the instructor was seen as an expert, the an-
swers toward empathy and behavioral involvement were low. This
could be a result of the participants mainly focusing on the task and
a reason for not paying attention to the social gaze cues. Also, so-
cial connectedness and efficiency could be improved by showing
the instructions in parallel while doing the task instead of sequen-
tially, which is often used in physical VR trainings [24]. As a con-
sequence, this should result in higher embodiment and accuracy by
simulating physical synchronicity and reducing mental load. Imple-
menting AI and making the asynchronous expert interact with the
users visually and verbally could further change the perception and
attention towards the avatar. Keeping the rapidly advancing devel-
opments in the field of generative AI in mind, future systems could
interact like real instructors, giving advice and gaze cues adapted to
the users’ needs while being independent of space and time.

6 LIMITATIONS AND FUTURE WORK

Our results show that technologies offer new ways of enhancing the
imitation of actions through augmentation. Still, during the study,
we faced some limitations but also found new directions for future
work, which we describe in the following.

6.1 External Validity
Transferring user study results into real situations often comes with
restrictions. Having the place fixed during the instructions is not au-
tomatically applicable in the real world, as spatial tasks are a com-
mon part of most learning processes. Compared to Cao et al. [8],
we deliberately omitted this aspect in order to achieve high inter-
nal validity for two-handed manual tasks and the influence of 1PP
and 3PP. Additionally, the interaction with the machine interface
and the generic task itself were artificial and receptive for the pur-
pose of the study. As successful imitation is only one of the first
steps of learning [7, 3], future research should therefore explore al-
ternative conditions like conducting short-term recall of longer se-
quences, long-term, and field studies, to find additional influences
on the learning process during asynchronous XR usage. Further,
we did not track the eye movement of the participants in relation to
the gaze visualizations. With the missing eye-tracking functional-
ity and virtual element calibrating issues of the HMD, we wanted
to avoid additional confusion and distraction by mounting and cal-
ibrating eye trackers before each condition. This data could give
further insights about the social connectedness of the participants
to the virtual instructor, at which time the participants gave atten-
tion to the different elements, and if the perspective and gaze cues
were influencing factors.

6.2 Diverse Visualizations
We only included one kind of avatar in the study design to keep
the conditions comparable. With people’s empathy varying towards
different characteristics, changing the appearance, gender, or even
using scans of well-known people or the user’s own body could be
valuable approaches, as stated by the participants. As already men-
tioned, we only used one 1PP visualization in AR to not include
further conditions that could have overstretched the length of the
study. We used a balanced within-subject design to keep the in-
fluences between the participants limited. Nevertheless, seeing all
conditions affected the participants’ perception of the expert.

In addition, we used gaze cues that are mainly implemented
in 3PP as the 1PP and asynchronous scenarios are less explored.
Therefore, more work should be invested in designing, adapting,
and evaluating new gaze visualizations for different perspectives
as well as further types of communicating gaze like audio or hap-
tics. Moreover, we faced hardware issues with the HMD not having
any marker or image tracking accessible, as well as limitations of
the pass-through leading to inaccurate tracing, wobbly vision, and

even system crashes. This results in the visualization feeling less
real, which potentially affected the study outcome. With future
technologies improving the resolution and the object tracking in
the room, no further adjustments of virtual elements will be needed.
Additionally, research should explore how these findings transfer to
other asynchronous XR technologies, such as VR or Mixed Reality.

6.3 View into the Future

Creating tutorials still requires extensive and resource-consuming
filming, editing, planning, an instructor’s presence, and expertise in
didactic 3D knowledge transfer. These tutorials often lack adapt-
ability to user behavior and can miss important learning factors.
Valuable social cues can get lost or overwhelming due to the wrong
representation for the individual learner. As technology rapidly ad-
vances, we expect that capturing, displaying, and adapting three-
dimensional information can be largely automated in the near fu-
ture, leading to diverse applications in the direction of our work.

Current scenarios focus on recording interactions of a skilled
person for replay when explanations or memory aids are needed.
This process is time-intensive, requiring re-filming for every new
task or machine update. Generative AI can change this by enabling
instant tutorial creation from descriptions, device visuals, or inter-
action recordings, generalizing usage scenarios across interfaces.
Social cues can be preserved and adapted to the needs of individ-
ual users, avoiding manual effort. Given such a system, the virtual
expert can predict [63] and properly respond to the user’s actions.
However, this outlook raises several new questions, such as: What
are the important aspects that need to be maintained, and which
information is necessary? How do the users and their surround-
ings feel when getting part of the tutorial of others? What are the
consequences when such tutorials are used in an unethical way?
Future research should also ensure the privacy and security of the
expert’s information, as well as define guidelines and visualization
techniques so that these factors are not violated. Nevertheless, we
emphasize that our work continues to be valid for these visionary
scenarios, and we expect the influence of perspective and gaze to
remain relevant. Therefore, we are confident that our work serves
as a foundation for future approaches to solving these questions.

7 CONCLUSION

In this paper, we explored the influence of asynchronous XR expert
perspective and gaze visualizations on efficiency, embodiment, and
social connectedness while users operated a manual task. In an ex-
perimental setup, we tested in a quantitative and qualitative within-
subject user study 36 participants, and collected empirical data. To
conduct the experiment, we built a machine interface with physical
controls and an AR application of a specialist showing two-handed
tasks that the user had to imitate after each animation. Our find-
ings suggest that the 1PP improves efficiency when replicating the
task as well as embodiment and social connectedness towards the
virtual expert. Further, we could show that gaze cues do not im-
prove the measured variables during visual-only demonstrations in
our setting. Still, half of the participants stated that they preferred
the gaze cues. We recommend future research in this area to ex-
plore further use cases, perspective, and gaze visualizations while
also investigating AI and privacy considerations in the field of asyn-
chronous XR instructions. Our work represents a great step in the
direction of effective three-dimensional knowledge transfer that not
only includes social factors but is also enjoyable for the users.
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