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Figure 1: Itsy-Bits recognizes 3D-printed tangibles as small as a fngertip via the capacitive image of an embedded conductive 
shape (A). This opens up a variety of tangible user interfaces on the most common form factors of touchscreens, such as 
individualized interactive board games (B) or a more tangible learning experience (C). 

ABSTRACT 
Tangibles on capacitive touchscreens are a promising approach to 
overcome the limited expressiveness of touch input. While research 
has suggested many approaches to detect tangibles, the correspond-
ing tangibles are either costly or have a considerable minimal size. 
This makes them bulky and unattractive for many applications. At 
the same time, they obscure valuable display space for interaction. 

To address these shortcomings, we contribute Itsy-Bits: a fab-
rication pipeline for 3D printing and recognition of tangibles on 
capacitive touchscreens with a footprint as small as a fngertip. Each 
Itsy-Bit consists of an enclosing 3D object and a unique conductive 
2D shape on its bottom. Using only raw data of commodity capaci-
tive touchscreens, Itsy-Bits reliably identifes and locates a variety 
of shapes in diferent sizes and estimates their orientation. Through 
example applications and a technical evaluation, we demonstrate 
the feasibility and applicability of Itsy-Bits for tangibles with small 
footprints. 
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1 INTRODUCTION 
Today, touch-enabled devices are ubiquitous, ranging from smart-

phones and tablets to wall-sized displays. While the concept of 
touch is easy to understand, it is often criticized as lacking input 
expressiveness as it only encodes a single point of touch [53]. As 
one solution, research has proposed interactive tangible objects (in 
short, tangibles) that, when placed on a touchscreen, enable haptic 
control of on-screen contents by identifying the object together 
with its location and orientation [8, 26, 45, 59]. This strand of re-
search has also proposed a great variety of interaction techniques 
that can be performed with tangibles, ranging from touch [51, 63] 
and deformation [3, 53, 60] to physical controls [19, 28, 62] and con-
struction [5, 8, 33]. Remarkably, despite this large body of research, 
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the number of successful tangible interfaces (e.g., TangiPlay1) is 
relatively small compared to the multitude of touchscreens that 
have entered our everyday lives. 

Although this trend is certainly infuenced by many factors, one 
of the main reasons is their challenging trade-of between produc-
tion costs and size: Tangibles are often either small but require 
costly hardware for active sensing or are comparably cheap to 
produce but bulky in size due to their use of spatially separated pat-
terns of touchpoints required to operate on commodity capacitive 
touchscreens. The latter is particularly critical for the most widely 
used but smaller form factors (such as smartphones and tablets), 
as big tangibles hide valuable display space, which in turn reduces 
the benefts of a tangible user interface that aims to interweave 
physical and digital information. 

To alleviate these limitations, we contribute Itsy-Bits: a fabri-
cation pipeline and sensing approach for passive tangibles with a 
small footprint comparable to the size of a fngertip (16-20 mm [9]). 
Itsy-Bits are 3D printed in a single pass with varying embedded 
conductive shapes on their bottom. The type of their shape and 
their orientation are then sensed using only the low-resolution 
raw data provided by commodity capacitive touchscreens (see Fig-
ure 1A). To this end, we contribute a machine learning approach 
that distinguishes up to 30 diferent conductive shapes (10 shapes 
in three sizes between 12 × 12 mm and 20 × 20 mm) at accuracies 
of 95.63 % for shape and 98.57 % for size, as well as a mean rotation 
error of 6.53 ◦. This approach is based on a recorded data set that 
maps capacitive raw data of 3D-printed shapes to ground-truth 
postures.As illustrated by a set of example applications (see two 
of them in Figure 1B&C), Itsy-Bits enable new types of tangible 
geometries that do not require a large footprint and, hence, allow 
for a more direct tangible input as the user’s view is less obstructed 
while aiming at a screen location. 

In summary, the contributions of this paper are two-fold: 

• A fabrication pipeline to create tangibles using an integrated 
design tool without further assembly. 

• A sensing approach that reliably identifes and locates 10 
shapes in three sizes (12 × 12 mm, 16 × 16 mm, 20 × 20 mm), 
including an estimate of their rotation. 

2 RELATED WORK 
This paper is situated in the areas of (1) extending the expressiveness 
of interaction on touchscreens, (2) digital fabrication of interactive 
objects, and (3) tangibles on touchscreens. 

2.1 Extending the Expressiveness of 
Interaction on Touchscreens 

Previous work has used capacitive raw data to extend the inter-
action with touchscreens for a wide range of use cases: Holz and 
Baudisch [16] recognize parts of the body (e.g., ears, fst) for au-
thentication. Further previous work [12, 29, 31] has used them to 
recognize fngers and parts of the hand. Researchers have also ex-
tended the sensing space of capacitive sensors to the environment 
of devices [61] and their whole surface to predict touch positions 

1
tangiplay.com 

on the front [40], detect swipe errors [41], and to enable the whole 
hand to perform input [30]. 

Prior work on machine learning with capacitive raw data ei-
ther distinguish two sources of touch (e.g., palm vs. fnger [29], 
left vs. right thumb [31]), or estimates the orientation of an index 
fnger. In contrast, Itsy-Bits, to the best of our knowledge, is the 
frst work that identifes tangibles based on a conductive shape on 
such low-resolution capacitive images. We go beyond fnger and 
hand identifcation on capacitive images by enabling practition-
ers to quickly fabricate and sense tangible user interfaces, further 
enriching interaction on widespread capacitive touchscreens. 

While there exist optical markers (such as ArUco [46]) or now 
commonplace QR codes, these approaches are not tailored to op-
erate with capacitive images of only 6 PPI (i.e., only 3 × 3 to 5 × 
5 4 mm-wide pixels for a single shape). These approaches require 
higher resolution and, even when printed conductive, would not 
work on a capacitive touchscreen since slight shifts and rotations 
of the marker would lead to a division of capacitance into adjacent 
cells, making the resulting raw data of such a marker too blurred 
for recognition. 

2.2 Digital Fabrication of Interactive Objects 
Embedding or attaching components to non-interactive objects is 
one approach to add interactive capabilities to 3D objects. This 
can be accomplished by attaching capacitive [47] or acoustic [43] 
sensors, or embedding cameras [48] or accelerometers [17]. Even 
though these approaches require only a few components, they 
imply additional efort or work only with hollow objects that can 
be opened after printing. 

An emerging stream of research investigates how to embed cus-
tomized interactive structures in 3D-printed objects. This includes 
adding interactive input and output functionalities in 3D-printed 
objects through light pipes [6, 64], by flling internal pipes with 
media post-print [49], or via pipes that transmit sound [28]. Other 
approaches print interactive objects using conductive spray [22] or 
plastic [7, 25, 32, 38, 50, 52, 54]. 

Building on this research, Itsy-Bits are created with an integrated 
design tool and then 3D printed in a single pass without assembly. 

2.3 Tangibles on Touchscreens 
Research has investigated localization and identifcation of tangibles 
on touchscreens via optical markers [5, 46, 63], magnetic sensor 
grids [27, 33–36], or localized NFC [57]. However, these approaches 
require either bulky setups or additional sensing hardware. 

To alleviate these limitations, research investigates how common 
capacitive touchscreens can be used to detect tangibles based on 
early work by Rekimoto [45]. By embedding conductive material or 
adding electronics to the tangible, the capacitive touch sensor can 
detect presence and location of tangibles using spatial touchpoint 
patterns [20, 58, 59, 66] and embedded passive-resistive components 
[21], determine combinations of multiple objects [8], or forward the 
touch on the object to the touchscreen [8, 24, 25]. While innovative, 
tangibles still have to be lavishly created and assembled. 

Therefore, a recent stream of research uses 3D printing to ease 
the individual creation of inherently specialized tangibles. Many 
approaches combine conductive and insulating printing materials 
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Figure 2: Based on the user’s interaction (A), Itsy-Bits iden-
tifes and tracks blobs in the capacitive image (B) and classi-
fes the conductive shape, its size, and its orientation using 
machine learning (C). 

in such a way that the objects create a unique pattern of individual 
touchpoints to diferentiate objects [13, 51, 53]. These approaches 
reduce the assembly efort typically required for embedding electri-
cal structures in tangibles. 

However, all touchpoints in such a pattern need to be sufciently 
spaced (at least 11 mm according to [13]) to not get fused to a single 
touchpoint by the touch controller. As a sufcient number of difer-
entiable tangibles requires many touchpoints, this either results in 
bulky tangibles or severely limits the number of distinguishable tan-
gibles, when a small footprint is required. Comparable approaches, 
such as PERCs [58] and CapCodes [13], require at least a footprint of 
40 × 40 mm and 31 × 21 mm and can, at these sizes, only distinguish 
eight to 12 individual tangibles. 

In contrast, Itsy-Bits distinguishes up to 30 tangibles (10 shapes 
in three sizes) with smaller footprints of 12 × 12 mm to 20 × 20 mm. 
This size is equal or even smaller than an average fngertip (16-
20 mm [9]). If more than 30 tangibles need to be diferentiated, n 
shapes can be fused into a single tangible, resulting in approx. 30n 

distinguishable objects (e.g., already 900 for combining two shapes). 

3 ITSY-BITS 
In this section, we present the operation principle, the composition, 
and the creation of an Itsy-Bit. 

3.1 Terminology 
The majority of touchscreens incorporate mutual capacitive sensing 
that comprises of spatially separated electrodes, arranged as rows 
and columns [4, 68]. That is, the touch controller measures changes 
in coupling capacitance between two orthogonal electrodes [10] 
which forms a capacitive image (see Figure 5). Consequently, we 
apply imaging terminology when appropriate. For instance, a pixel 
of such a capacitive image represents the diferences in electrical 
capacitance (in Picofarad) between the baseline measurement and 
the current measurement at the corresponding intersection. 

Since touch controllers perform fnger tracking with a modest 
resolution (as big as 4x4mm for a single pixel), such capacitive 
images are of very low resolution (i.e., only 6 PPI compared to 

Figure 3: The diference in capacitive images between a 
touched (A) and untouched (B) conductive shape. The mere 
presence of untouched objects remains detectable by analyz-
ing the still active pixels. 

445 PPI of a display on the same device). As a result, the image of a 
conductive shape is considerably blurred despite the high spatial 
resolution of the shape itself (see Figure 2). 

3.2 Operation Principle 
Based on capacitive sensing, Rekimoto [45] frst proposed to embed 
conductive materials into tangibles to detect them on capacitive 
touchscreens. Following this idea, an Itsy-Bit contains a conductor 
that reaches from the location where it is gripped to the location 
where a conductive shape, placed at the bottom side, contacts the 
capacitive touchscreen. When the user touches the tangible, the 
conductor capacitively couples the fnger – through the conductive 
shape – to the touchscreen. This results in a detectable change in 
capacitances at the pixels that are covered by the conductive shape 
and, hence, in a capacitive image of the corresponding shape. 

Following this general principle, Itsy-Bits employs a machine-

learning approach that operates as follows: 

(1) Capacitive images are constantly searched for blobs of lit 
pixels above a minimal threshold (see Figure 2B). 

(2) These blobs are then fed to a machine learning model that 
classifes all shapes, their size, and orientation (see Figure 2C). 
We detail the model in Section 5. 

(3) If a blob is classifed as a known shape, the blob’s position is 
tracked as the position of the tangible. 

In addition, Itsy-Bits is able to detect untouched tangibles through 
a weaker capacitive signal since the flled conductive shape con-
nects adjacent pixels (which afects the mutual capacitance). While 
this signal is too weak for classifcation, it remained in our informal 
tests for over two hours and is sufcient to determine whether 
the tangible still rests untouched on the touchscreen by analyzing 
whether the pixels in the corresponding blob (see Figure 3B) are 
above a noise threshold that we defned based on an average of 
recorded noise images. 

3.3 Composition 
An Itsy-Bit is a 3D-printed material composite, which consists of 
the following structures (see Figure 2): 

(1) The grip structure needs to be touched by the user to eventu-
ally form a path between the user and the touchscreen. 

(2) The shape structure is embedded at the outside of an object 
and, in case of interaction, touches the screen. Its shape and 
size difer for each tangible. 
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Figure 4: Using a design tool, non-expert users (1) import a 3D-printable model and add (1) grip and (2) shape structures. The 
tool then automatically embeds necessary wires (4) and provides an export of 3D models for multi-material printing. 

(3) The wiring structure connects the grip structure to the shape 
structure so that the user is connected to the touchscreen 
when gripping the tangible. 

All structures are made of a conductive polymer and can have a 
custom size and 3D shape. Multiple grip, wiring, and shape structure 
can be embedded within a 3D-printed object. 

3.4 Fabrication and Interaction 
To create a tangible user interface with a set of individualized Itsy-
Bits, a creator performs three steps – design, print, interact – as 
described in the following: 

3.4.1 Design. To facilitate the creation and use of Itsy-Bits also for 
non-expert users in 3D modeling, we propose a graphical design 
tool. As depicted in Figure 4, a creator can fabricate a tangible 
consisting of insulating and conductive material as follows: 

(1) The creator imports an arbitrary volumetric 3D model (ob-
tained, for instance, via 3D scanning or an online platform 
for 3D models) into the design tool which is then displayed 
in a standard 3D view. 

(2) The creator adds custom-shaped grip structures by using dif-
ferent tools, such as lasso or polyline selection of subsurfaces 
of the object. 

(3) The creator then adds one or multiple shape structures to 
the bottom of the tangible (or any other desired location that 
may touch the screen). To that end, the creator selects the 
respective shape and size from a sidebar and clicks on an 
appropriate 3D position on the model. For further support, 
the design tool alternatively provides automatic recognition 
of a surface of a suitable size on the bottom of the object. 

(4) When the creator has fnished designing, the design tool 
creates wiring structures between each conductive shape 
and all grip structures. The auto wiring uses A* operating 
on a voxelized representation of the 3D model (cf. [49, 51]). 
On export, the tool creates 3D models for all insulating and 
conductive structures required for 3D printing using Boolean 
operations known from constructive solid geometry [37]. 

3.4.2 Print. Using the exported 3D models, the creator fabricates 
all Itsy-Bits using a commodity multi-material 3D printer in a sin-
gle pass (we detail on the fabrication details in Section 4.3). After 
printing, the tangible can be used directly without further assembly. 

3.4.3 Interact. Itsy-Bits directly integrates with standard applica-
tion development on mobile devices: The creator uses their normal 

workfow to create a standard touch-enabled application. For tangi-
ble interaction, they can receive events containing the shape, size, 
orientation, and location of an Itsy-Bit when it is placed, moved, or 
removed from the touchscreen. 

The machine-learning model that recognizes Itsy-Bits can be 
deployed and executed in real-time on standard mobile devices 
capable of accessing capacitive images. While a single classifcation 
requires only milliseconds on an average-class smartphone (e.g., 
approx. 30 ms on a Nexus 5 used for prototyping), the position 
of the tangibles is estimated via standard blob tracking to further 
improve performance. For the same reason, the orientation is only 
computed on request by the application. 

4 GROUND TRUTH DATA COLLECTION 
As illustrated in Figure 5, standard shape recognition (e.g., counting 
defects in the convex hull) is hardly applicable to the low resolution 
of capacitive images. Therefore, we investigate the feasibility of 
diferent supervised machine learning approaches. We conducted 
a data collection study using optical tracking (as in [30]) to gain 
ground truth data for shape identifcation and rotation estimation. 

4.1 Selection of Shapes 
4.1.1 Types of Shapes. Intuitively, distinguishing conductive shapes 
on a low-resolution capacitive image requires a set of maximally 
distinct shapes. To fnd a suitable algorithm to generate shapes with 
such properties, we conducted a literature review (e.g., [2, 44, 55, 
67]). However, to the best of our knowledge, there is no algorithm 
that produces a (minimum) set of maximally distinguishable shapes. 

Therefore, we have chosen an alternative approach that follows 
the hypothesis that shapes with a specifc name in our language 
have a high visual distinctiveness due to which they were uniquely 
named. Hence, we considered the set of named shapes, many of 
which are already known from school, and selected representa-
tive examples of the most common shapes: arrow, circle, cross, 
heart, hexagon, moon, parallel, sqare, star, and triangle. 

As each shape should be rotation-variant, we modifed all shapes 
that did not fulfll this criterion with a linear cut (circle, cross, 
hexagon, parallel, sqare, star, and triangle). To avoid confu-
sion, we intentionally left the naming of the original shapes intact 
(e.g., we still call the 5-edged linear cut square a square). 

Although we focus on named shapes, these already cover a va-
riety of geometric primitives, such as (1) varying curvatures, (2) 
convex and concave corners and curves, and (3) diferent number 
of edges. By varying these geometric features, the shapes cover 
diferent amounts of a capacitive pixel and, thus, maximize the 
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Figure 5: The set of 10 rotation-variant shapes (named after the shape it originated from) and a sample of a corresponding big 
(20 × 20 mm), medium (16 × 16 mm), small (12 × 12 mm), and tiny (8 × 8 mm) capacitive image. 

chances of being correctly classifed by the CNN. As the capacitive 
images are of very low resolution, the key for diferentiation is a 
set of geometric features that remain when scaled down. This set 
of shapes is, of course, only one possibility we have chosen in the 
absence of a suitable generation algorithm. 

4.1.2 Sizes of Shapes. Diferent sizes of shapes are one additional 
important factor. As one capacitive pixel equals ~4mm, we opted for 
the following four sizes which multiples of 4mm and normalized to 
the shape’s longest edge: tiny (8 × 8mm in a 2 × 2 grid), small (12 × 
12mm in a 3 × 3 grid), medium (16 × 16mm in a 4 × 4 grid), and 
big (20 × 20mm in a 5 × 5 grid). We considered shapes the size of a 
1 × 1 grid, i.e., only a single capacitive pixel, infeasible. 

4.2 Apparatus 
We used a grounded of-the-shelf LG Nexus 5 device (touch con-
troller Synaptics ClearPad 3350) with a modifed kernel to access 
the capacitive images (without flters or calibration) as described 
in previous work [16, 29, 31, 39, 53, 65]. Figure 5 depicts exemplary 
capacitive images. We developed an application that logs the capaci-
tive images at a sampling rate of 20 fps. Of note is, that the sampling 
rate is only limited due to the fact that we use a debug interface of 
the touch controller (in line with previous work [16, 29, 53]). 

To record object movements on the touchscreen with an accu-
racy of less than one millimeter, we used an optical tracking system 
(OptiTrack with 200 fps) with fve cameras. We mounted the cam-

eras at a table (see Figure 6B). To track each tangible, we created an 
OptiTrack trackable (4 markers) which was attached to the objects. 
Using the trackable, we were able to track the exact rotation and 
position of the conductive shape on the touchscreen. To determine 

the relative position of the tangibles on the screen, we calibrated 
the upper left corner as the origin. 

4.3 Fabrication of Shapes 
We printed an object for each of the 10 conductive shapes in all 
four sizes (in total, 40 objects as depicted in Figure 6A). We added 
an extra handle for users to make rotating easier, and a screw hole 
to attach an optical marker for ground-truth tracking. 

The objects were 3D-printed on a Prusa MK3 with Multi-Material 
Upgrade 2 and only commercially available printing material. The 
conductive structures consist of carbon-doped Proto-Pasta Con-
ductive PLA (volume resistivity of 30–115 Ω∗ cm). All materials 
were printed with a 0.4 mm thick nozzle at a temperature of 215◦C 
and a speed of 18 mm/s. To maximize conductivity, we printed all 
conductive structures with 100 % infll density. 

4.4 Participants 
While research frequently utilizes mechanical apparatuses to evalu-
ate capacitive approaches technically (see for example [14, 68]), we 
opted to record our data set with users to ensure that our model is 
robust against user-specifc capacitive efects and hand characteris-
tics. Therefore, we recruited fve participants between the ages of 
27 and 32 (mean age 29.2). All participants received an introduction 
to the system before exploring it freely until they felt comfortable. 
We have complied with all relevant hygiene and infection control 
guidelines. 

4.5 Design and Procedure 
After obtaining informed consent, we briefed the participants on the 
conductive shapes and the data collection procedure. We instructed 
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Figure 6: For the data collection study, we printed test objects 
of all conductive shapes and sizes (A) and recorded their po-
sition and rotation on the touchscreen with optical tracking 
(B) together with the corresponding capacitive images (C). 
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the participants to rotate all 40 objects as follows: A monitor next 
to the participant visualized a 2D circle and an arrow which rep-
resented the real-time optical tracking data (see Figure 6B). This 
application ensured that each orientation (1◦ 

bins) was hit at least 
once by providing live feedback. Also, the system recorded further 
instances of an orientation to gain as much training data as possible. 
Erroneous data recording was prohibited as the recording stopped 
as soon as the trackable left the surface of the mobile device. We 
instructed participants to move and rotate each object slowly due to 
the lower sampling rate of the screen and also vary the position of 
the object on the screen. A session lasted 80 minutes per participant 
on average. 

4.6 Results and Post-Processing 
In total, we collected a data set that matches 269,867 capacitive 
images (per user µ = 53,973.4, σ = 5346.3) to their originating con-
ductive shape, ground-truth orientation, and position (see Figure 6C 
for a small set of samples). To that end, we merged the capacitive 
images with the optical tracking data using timestamps. Before 
each study run, we synchronized the time of the Nexus 5 and the 
optical tracking to a local time server (maximal ofset < 0.05s). 

5 RECOGNITION OF CONDUCTIVE SHAPES 
ON CAPACITIVE IMAGES 

Based on our data set of low-resolution capacitive images mapped 
to ground-truth position and orientation, we have trained and vali-
dated diferent models for shape and size classifcation as well as 
rotation estimation. 

5.1 Pre-Processing 
To train a position-invariant model, we frst used OpenCV’s con-
tour detector to identify the blob of pixels. We then cropped the 
blob into a new empty capacitive image onto the upper left corner. 
This approach enables to identify multiple tangibles placed on the 
touchscreen simultaneously. We removed all other capacitive im-

ages which do not contain exactly one touch blob (e.g., a tangible 
was lifted, or a fnger was additionally touching the display). 

After this step, we have 193,145 capacitive images. We use a 
training-test-validation split of 60 % : 20 % : 20 %, which results in 
115,887 training, 38,629 test, and 38,629 validation samples. We split 

Figure 7: CNN architecture for the model that classifes 
shapes and sizes, and estimates rotation. 

the data set based on the timestamps (1) to split participant-wise 
(as studies ran subsequently) and (2) to avoid including similar 
samples (i.e., subsequent images of the same shape) in diferent 
data sets. Using this approach, we ensure that we generalize beyond 
users by approx. splitting subjects 1-3 to training, 4 to test and 5 to 
validation. 

5.2 Modeling 
Our modeling process consists of two phases. First, we have experi-
mented with heuristics and basic machine learning techniques to 
show that recognizing shapes and their attributes is not a trivial 
challenge on low-resolution images. In the second step, we have 
applied state-of-the-art deep learning techniques and show that 
they are superior with adequate performance. 

5.2.1 Heuristics and Basic Machine Learning. We trained a support-
vector machine (SVM) and a kNN with pixel count and sum/mean/std 
of the image capacitance as the feature vector. The SVM achieved an 
accuracy of 17.5% which outperforms the 16.9% by the kNN model. 
Using the raw blob data as input, the random forest achieved a 
promising accuracy of 58.3%. We performed a grid search to fnd op-
timal hyperparameters for these models and excluded tiny shapes 
in all basic models as these shapes were even more infeasible to 
classify. 

While these models are lightweight, the accuracy is not sufcient 
and makes a rotation estimation on top infeasible. Beyond others, 
two of the main reasons are: (1) the low resolution of the capacitive 
image which makes an object recognition task a highly non-linear 
challenge which is hardly solvable with simple models, and (2) the 
insufcient diference in pixel count between all shapes throughout 
all sizes, making it an undesirable measure for classifying shape 
and size at the same time. A possible addition to this initial experi-
ment could be feature extraction using computer vision techniques. 
However, the richness of the input signal would still be the same 
while unnecessary complexity is added compared to a pure deep 
learning technique. 

5.2.2 Convolutional Neural Networks. Since short = CNN, long = 
convolutional neural networks (CNNs) are recently the state-of-the-
art algorithm for image data, we implemented a CNN with Keras 
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Figure 8: Confusion matrices for the classifers of shapes of a single size only (A-D). Also, confusion matrices for the combined 
model (including small, medium, and big) classifying both shape (E) and size (F). 

based on the TensorFlow backend. To fnd the hyperparameters 
that perform the best on the test set, we performed a grid search as 
proposed by Hsu et al. [18]. If we do not report a hyperparameter, 
we applied the standard value (e.g., optimizer settings) as reported 
in Keras’ documentation. 

Figure 7 shows the architecture of our CNN that classifes the 
shape and size of the tangible and estimates its rotation. The in-
put consists of a 15 × 27 px capacitive image, which is frst pro-
cessed by two groups of convolution and pooling layers. Each 
convolution layer has a 3 × 3 kernel while pooling was imple-

mented as a 2 × 2 max pooling. The result of the convolution 
layers is then passed on to three branches: a shape and a size 
identifcation branch, as well as a rotation estimation branch. The 
shape and size identifcation branches are a neural network for 
classifcation which uses a softmax activation function in the out-
put layer and categorical cross-entropy as its loss function. The 
rotation estimation branch solves a regression problem with a 
linear activation function in the output layer and a root-mean-

squared-error of the minimum angular error as its loss function: 
loss = atan2(sin(ytrue − ypred ), cos(ytrue − ypred )). We used an 

Adam optimizer with an initial learning rate of 0.001. Further, we 
applied batch normalization and a dropout of 0.4 after each max 
pooling and hidden dense layer to counteract overftting. 

5.3 Model Training and Validation 
While we used the training and test set for model development, we 
use the validation set to calculate the following accuracies. Figure 8 
shows the confusion matrices for all classifers. 

5.3.1 Models for a Single Size. First, we trained four diferent mod-

els per size to assess their feasibility for identifcation and rotation 
estimation. Our results show that tiny shapes cannot be accurately 
identifed with a shape accuracy of only 50.15 % and a rotation error 
of 44.93 ◦. All other shapes can be recognized with the following 
shape accuracy (SA) and rotation error (RE): (1) for size small: SA 
88.86 % and RE 9.05 ◦, (2) for size medium: SA 97.77 % and RE 7.27 ◦, 
(3) for size big: SA 99.51 % and RE 5.96 ◦. 

For the small shapes, the model achieved the lowest accuracy. 
While still promising, the convolution layers most probably cannot 
extract enough signal from the raw data for the dense layers to 
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learn both shape and rotation because of the decreasing shape size 
in combination with the very low resolution. 

5.3.2 Combined Model. Second, we trained a combined model 
for small, medium, and big shapes with the aforementioned size 
branch. The model achieves a shape accuracy of 95.63%, a size 
accuracy of 98.57 %, and a rotation error of 6.53 ◦ 

averaged over all 
shapes. When validating the combined model with only one size, it 
achieves a shape accuracy of 89.93 % for small, 97.56 % for medium, 
and 99.46 % for big. 

5.3.3 Models with a Subset of Shapes. Using only a subset of shapes 
further increases the accuracy. To obtain a subset, shapes with the 
highest sum of misclassifcations (i.e., per row) in the confusion 
matrix of the combined model should be subsequently removed. 
To illustrate the potential of shape subset models, we trained two 
models for only size small with fve shapes (cross, moon, sqare, 
circle, arrow) with 96.97 %, and six shapes (cross, moon, sqare, 
circle, arrow, star) with 95.58 % accuracy. 

5.4 Cross-Device Validation 
In addition to the established validation procedure, we have investi-
gated how our model, trained with data obtained from a touchscreen 
of a smartphone (4.95"), performs on a diferently-sized touchscreen. 
Furthermore, we were interested in the question whether an app-
controlled recording method, a more viable procedure than using 
expensive optical tracking systems, is suitable to obtain additional 
raw data (e.g., for additional conductive shapes). 

5.4.1 Procedure. We recorded capacitive images without an optical 
tracking system as follows: Using a mobile application, users follow 
simple instructions on how to move and rotate the tangible on the 
display (see Figure 9A). To this end, the application displays a visual 
representation of a rotated shape in the correct size and instructs the 
user to exactly cover it with the object. After placing and holding the 
object still, the application records 2 seconds (approx. 14 samples 
obtained from the touchscreen’s debug interface). The user is then 
instructed to repeat this procedure for all of the conductive shapes, 
sizes, and rotations with confgurable step-size. 

As a proof-of-concept, we carried out the procedure on a tablet 
(Samsung Galaxy Tab S2 with 9.7" display, approx. 6 PPI for capaci-
tive images, touch controller Synaptics S500B) with a single user 
(diferent from the participants of the collection study). In total, we 
recorded 14.824 images (for all 10 shapes in 10° steps of rotation and 
the sizes small, medium, and big, as tiny is infeasible to classify). 
This process takes around one minute to record all rotations of a 
single conductive shape (hence approx. 30 minutes for 10 shapes in 
three sizes). As our models operate on capacitive images with size 
15 × 27px , we cut out an image of this size from all tablet images 
(sized 37 × 49px ) that covered the recorded shape. 

5.4.2 Results. We used the recorded data as an additional valida-
tion set for the aforementioned combined shape and size classifer. 
Figure 9 shows the corresponding confusion matrices for shape 
(B) and size (C). Our results show that shapes can be identifed 
with a high accuracy of 93.34 %. The rotation error of 17.87 ◦ 

is 
increased compared to the original validation (6.53 ◦). While this 
could be due to the change in device, this could also be due to the 

Figure 9: (A) The application to record capacitive images 
without optical tracking. Also, the confusion matrices for 
the cross-device validation of the combined shape (B) and 
size (C) classifer. 

manual recording procedure (i.e., users are probably not able to 
input a target rotation as precise as provided by optical tracking). 
This is an interesting aspect that should be further addressed by a 
study combining manual user input with optical tracking. Moreover, 
the size accuracy of 90.36 % is lower than the original validation 
(98.57 %). Interestingly, this mainly afects the medium size (i.e., the 
accuracy for small and big is 97.5 %) as there are more possibilities 
for confusion (i.e., both big and small can overlap with medium). 

5.5 Mobile Performance 
We froze and exported the trained model into a protocol bufer fle 
which we run with TensorFlow Lite on both devices (Nexus 5 and 
Samsung Galaxy Tab S2). A model inference takes 29.2ms (min = 
19ms , max = 61ms , SD = 6.01ms) averaged over 1000 runs. This 
is faster than the 20 fps sampling rate for the capacitive images, 
which even enables the model to run in the background continu-
ously. Moreover, we reduce load induces due to continuous model 
inferences by tracking each blob after an initial classifcation using 
a soft majority voting (frst fve frames). The model inference time 
can be further reduced with model optimization [1, 15], and recent 
smartphones optimized for neural networks. 

6 EXAMPLE APPLICATIONS 
In the following, we present example applications for Itsy-Bits that 
illustrate the broad applicability of tangibles with a small footprint. 
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Figure 10: Itsy-Bits enhances editing on small devices involving frequent tool changes (A), makes interactive board games 
more individualized (B), serves as a mobile mixing console (C), or improves tangible learning experience (D). 

6.1 Tangible Editing Experience 
While mobile work has become increasingly popular and wide-
spread, digital editing is, especially on small form-factors, often cum-

bersome as many editing functions need to be frequently switched 
which usually requires many consecutive touch inputs. Therefore, 
our prototype (inspired by [11]) maps diferent tangibles to specifc 
editing functions, utilizing the familiarity of objects known from 
analog editing to provide intuitive mappings. For example, a 3D-
printed pen can be used to highlight text while an eraser removes 
it (see Figure 10A). This prototype also ofers a comment bubble, 
which triggers a comment at the detected position, and a stamp 
known from paper works, which inserts a symbolic imprint. 

In general, such editing interactions are very versatile and gen-
eralize not only to the exemplary document editor but also, for 
instance, to painting, planning, or 3D modeling applications. The 
strength of Itsy-Bits lies in (1) its small footprint, which allows for 
precise input, and (2) the versatility of 3D printing and its strong 
adaptability to a variety of scenarios and user needs. 

6.2 Interactive Board Games 
This example presents a board game, in which players can compete 
using diferent Itsy-Bits: a ship, a treasure chest, and a lighthouse 
(see Figure 10B). The frst player uses the tangible treasure chest to 
sink a virtual counterpart into the sea by tapping it on the screen. 
The second player can rotate the lighthouse to reveal the treasure 
on the ocean foor using the emitted virtual light beam. Once found, 
the player can lift the treasure using the ship tangible. 

This application example illustrates the power of Itsy-Bits to gen-
erate a variety of new tangible user experiences that are no longer 
limited to mass production, but also enable highly individualized 
game characters (e.g., 3D scanned miniature versions of the players) 
on the most widespread form factors of capacitive touchscreens. 

6.3 Mobile Mixing Console 
Mixing consoles require knobs and sliders for precise input but are 
often large and unportable. While mobile devices are smaller, touch 
input is often too imprecise, mainly due to the fat-fnger problem 
and the lack of tangibility. With Itsy-Bits, users can print tangibles, 
similarly shaped to the corresponding instrument, to control their 
volume, balance, and highs (inspired by [23]). For instance, moving 
a guitar-shaped object vertically on the touchscreen changes its 
volume, while rotating adjusts the balance (see Figure 10C), enabling 
direct and frequent switching between instruments. 

This example is representative for mobile scenarios that are prof-
itably on the go where smaller form factors (such as smartphones) 
are more convenient. In these cases, Itsy-Bits are small enough to 
allow screen content (e.g., the absolute volume) to be always visible 
and also provide the benefts of a tangible user interface. 

6.4 Tangible Learning 
Tangible interfaces ofer the potential for higher technology accep-
tance by the elderly [56]. In this use case, we leverage the physicality 
and tangibility of Itsy-Bits for an easy and intuitive implementation 
of the Montreal Cognitive Assessment (MoCA) test, a screening tool 
for cognitive impairments [42]. In this test, subjects must remem-

ber items and replicate them in order. As abstract visualizations on 
paper is often too challenging, this example (see Figure 10D) allows 
users to interact with 3D representations of the items (a person, a 
TV, a camera and, symbols for women and man) on smaller devices. 

The last example illustrates the meaning of Itsy-Bits also for spe-
cialized user groups and the benefts of multiple tangibles that ft on 
small devices (e.g., all fve objects ft on a single 4.95" smartphone) 
and are highly individualizable (e.g., the learning performance may 
be improved when using 3D-printed representations that reassem-

ble familiar objects, animals, or people known from the past). 
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7 DISCUSSION AND LIMITATIONS 
While we present an approach to 3D print small tangible objects 
that can be recognized on of-the-shelf capacitive touchscreens, our 
approach has limitations that must be considered. 

7.1 Further Interactions 
Itsy-Bits detects untouched tangibles if they are touched when 
placed, moved, or removed from the touchscreen. However, there 
are undoubtedly cases that our approach does not cover and remain 
challenging (e.g., throwing tangibles onto the touchscreen or a 
movement induced by tilting the touchscreen). 

Moreover, the maximal rotation speed is currently limited by 
the sampling rate of the debug interface (approx. 20 fps). However, 
recent touch controllers already feature faster sensing (e.g., 150Hz 
with the Synaptics S7817) that will improve the performance. 

Since this paper focuses on the fundamental properties of CNN 
shape recognition (with rotation and size), we did not consider 
fnger touches. 

As a proof-of-concept, we trained a binary CNN classifer for 
fnger versus shape with an accuracy of 99.62 % based on the open 
data set CapFingerId2, which was recorded on the same touchscreen 
as our ground truth data. 

7.2 Cross-Device Validation 
While we would have preferred to validate our model with more 
than two devices, access to capacitive images is still limited on 
many devices. Nevertheless, we see our cross-device validation as 
a frst step showing the capabilities of our model and outlining a 
procedure to validate future devices without optical tracking. 

7.3 Scalability 
The number of distinguishable tangibles can be scaled up in two 
ways: First, combining n shapes scales with 10n 

(shapes of only one 
size) or 30n 

(shapes of three sizes), but requires a gap of two pixels 
between individual shapes (e.g., four small shapes would be sized 
26 × 26 mm, which is still smaller than many related works, and 
already encode up to 104 

IDs). 
Second, additional shapes can be created based on the presented 

set by adding edges or cutting inner parts. As a heuristic, a shape 
should have a sufcient diference not only in high resolution but 
also when heavily scaled down. This heuristic also explains why 
some of the shapes are less distinguishable when downsized: For 
example, circle and hexa are interchanged in 2.4% (see Figure 8E, 
cell [2,5]) as the rounding of the circle and the tip of the hexa are 
blurred in low resolution and, thus, produce similar images. The 
further the resolution is reduced, the greater the efect, which also 
explains the efect of the shape’s size on the accuracy. 

7.4 Data Collection Without Optical Tracking 
We opted for a controlled setup to collect our training data, as 
we otherwise could not guarantee a proper data set, especially 
for rotation estimation. However, training data for the rotation 
estimation might also be generated by using simple image rotation 

2
github.com/interactionlab/CapFingerId

3
github.com/telecooperation/itsy-bits 

algorithms or via an application that visually guides end-users in 
proper placing, moving, and rotating a new tangible. As a proof-of-
concept for the latter, we successfully validated a data set that was 
manually obtained on another device only via an application. 

7.5 Improving the Recognition Accuracy 
While we already show a usable classifcation accuracy and rota-
tion estimation, both could be improved with diferent methods. 
A higher touch-sensing resolution helps especially in recognition 
and rotation estimation as the edges become more visible. As our 
cross-device validation has shown, the current model can already 
be transferred to another form factor without further changes. 

Moreover, more specialized deep learning models could be used 
to improve accuracy in general. Techniques such as ensembles, 
bagging, and boosting could consider multiple images or classifers 
to improve the model accuracy. With advances in machine learning 
research, accuracy is likely to improve even further in the future. 

7.6 Diferences Between Users and Prints 
While a single user can perform the Itsy-Bits pipeline, we collected 
data from multiple users. This enables us to test for diferences in 
recognition accuracy between users. With our data set split, our 
results indicate that our approach works independent from users, 
respectively their hand properties. 

Also, multiple 3D prints of a conductive shape may vary slightly 
within the sub-millimeter tolerances of a 3D printer. We printed 
multiple instances for our evaluation and applications and observed 
no efect on recognition, most likely because the model generalizes 
to the high-level shape instead of tiny variations. 

8 CONCLUSION 
We have presented Itsy-Bits, a fabrication and recognition approach 
for small-sized tangibles on of-the-shelf capacitive touchscreens. 
Our contributions include a fabrication pipeline for 3D-printing 
conductive tangibles which can be recognized by capacitive touch-
screens. We present a machine model that reliably identifes 10 
diferent shapes in three sizes with an accuracy of 95.63 % for shape, 
an accuracy of 98.57 % for size, and a rotation error of 6.53 ◦. We 
illustrate the versatility of our approach for engaging tangible user 
interfaces through a set of example applications. 

Future work could evaluate our use cases in long-term study 
settings. For this, we publicly share our data set, 3D models, and our 
CNN model, which can be readily deployed on commodity mobile 
devices 3. This enables researchers to use and extend the recognition 
pipeline and build exciting user interfaces with tangibles that have 
a footprint as small as a fngertip. 
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