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Figure 1: We analyze different combinations of interaction (a, b) and visualization (c, d, e, f) techniques to support comparison

of scenes in VR environments. (a, b) depict button and gesture-based interaction modalities. (c) shows the virtual study

environment without any support visualizations, serving as a baseline. (d, e, f) present the combinations of the different

visualization methods.

Abstract

Desktop screens are effective for supporting comparison tasks, but
as the scale increases to room-sized or larger structures, context is
lost. Users are forced to focus on isolated details through panning,
zooming, and scrolling, making it difficult to maintain an overview
while exploring finer details. Virtual Reality (VR) potentially of-
fers a solution to this problem by immersing users in 3D spaces
and enabling more intuitive comparisons. While related work has
proposed many solutions for visualizing and interacting for com-
parison tasks in desktop environments, knowledge regarding the
efficacy of supporting such tasks in VR environments is still lacking.
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We investigated varying visualization and interaction techniques in
a controlled experiment with 24 participants. Our findings provide
valuable insights for designing VR systems that improve usability,
reduce workload, and enhance performance in comparison tasks.
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1 Introduction

Recognizing changes or subtle shifts is crucial for decision-making
and comparison tasks across fields [11] like forensics [4], historical
research [12], medical imaging [18], and automotive engineering
[15]. We can easily perform such tasks on a desktop screen for
small objects but as the scale increases, e.g., for comparing room-
sized or larger structures, context is lost, and we are forced to focus
only on isolated details while panning, zooming, and scrolling the
environment. This hampers our ability to maintain a clear overview
and examine finer details at the same time [9]. Further, the inherent
2D nature of desktop systems makes the task more difficult, as they
lack the spatial depth and perspective needed to fully represent
complex 3D environments.

While AI-driven solutions could theoretically encode and high-
light differences explicitly, they would introduce new challenges,
like distancing users from the process, leading to disengagement
and reliance on automated judgments that may bypass human in-
tuition. As another approach, Virtual Reality presents a promising
alternative by immersing users directly into a 3D environment and,
thus, potentially offers a powerful way to balance computational
efficiency with active human involvement and understanding. How-
ever, while VR enables users to explore spatial relationships [20], it
introduces a new challenge: How do we compare different objects
or scenes in such an immersive setting? For desktops, research
identified juxtaposition – where objects are separated in space or
time – and superimposition – where an object overlays another in
the same coordinate system – as typical comparison techniques.
However, it is as of today unclear how these different visualization
techniques perform in VR environments and how they need to be
designed to ensure both efficiency and accuracy, but also to provide
a pleasant user experience.

As a first step to achieve this, in this paper, we contribute a
systematic investigation of common comparison techniques in a VR
environment.We include both juxtaposition and superimposition as
possible visualization techniques. As side-by-side comparisons are
impractical in VR as they disrupt immersion, and we can only fully
experience one 3D space at a time, we use temporal displacement
(i.e., showing only one of the alternative versions of a scene at a
time.) as a juxtaposition technique. As these approaches rely heavily
on user interaction (i.e., selecting different scenes or visualization
modes), this further raises questions about how the comparison
visualizations should be applied — whether to entire scenes or
specific areas — and how users can best control and engage with
them.

In our study, we evaluated how different combinations of interac-
tion techniques and visualization methods impact users’ ability to
identify differences between VR scenes. By examining their impact
on usability, workload, and performance, we provide actionable
insights for designing VR applications that effectively leverage
human intuition for comparison tasks.

2 Related Work

Searching and comparing objects or scenes is a critical task across
various domains [4, 11, 15]. While AI and computers excel at au-
tomating tasks and processing data efficiently, having a human in

the loop is beneficial for several reasons [17]. Transparency and ac-
countability are crucial for trust and accuracy, as seen in AI-driven
medicine, where users need reliable explanations for AI decisions.
The European Commission requires human oversight to ensure
trustworthy AI [1]. Humans provide critical thinking and ethical
judgment that machines cannot, ensuring decisions are aligned
with nuanced contexts and values [10]. Their oversight also helps
prevent errors and mitigate unintended consequences, particularly
in complex or high-stakes scenarios.

Supporting users in effectively performing these tasks in VR
requires thoughtful design of both visualization techniques and
interaction methods. Object comparison techniques have been ex-
plored across various domains. Each method offers distinct advan-
tages and challenges. Visual designs that aid comparison generally
fall into three categories: juxtaposition (separating objects in space
or time), superimposition (overlaying objects in the same coordi-
nate system), and explicit representation of relationships (visually
encoding connections, such as differences between objects) [3]. Gle-
icher et al. [3] highlight the significance of interaction in visual
comparison. Another prominent solution for VR visualization are
metaphor-based visualization approaches, such as using flashlights
and other objects. These familiar objects help users intuitively nav-
igate and interact with 3D visualizations [16]. This work also laid
the groundwork for later research that utilized intuitive gestures
and tools to navigate complex data in a more accessible and user-
friendly way. On-Body-Interaction uses the human body as both
an intuitive input and responsive output interface, providing a con-
stantly available interaction platform [6]. Leveraging the body as
an interactive surface has been shown to improve accuracy and
reduce fatigue while preserving mobility and eliminating the need
for extra devices. This creates a seamless, direct interaction space,
minimizing reliance on external controllers and offering an always-
accessible platform for engagement [2]. Body interaction can be
enabled through various methods, like acoustic sensors [7] or wear-
ables [13, 14]. Depth-sensing cameras can enable interaction with
any surface [5].

3 Methodology

By combining these proven visualization and interaction techniques,
our study aims to enhance user engagement and effectiveness in
immersive comparison tasks.We conducted a controlled experiment
to explore the impact of different interaction and visualization
techniques on the accuracy, usability, and perceived workload of
spotting differences between multiple versions of a VR scene. We
tasked participants to discover as many differences as possible
between three different versions of the same VR scene. In each
condition, we presented our participants with one original scene
and two varied scenes that contained in total 30 differences (15 in
each varied scene) to the original scene. Depending on the condition,
participants used different techniques to switch between scenes
and experienced varying visualizations. We chose 30 differences
through pre-testing the task, to suit the timeframe per condition
and used two varied scenes to add a reasonable level of complexity
without the risk of overwhelming the participants.. To minimize
learning effects, each condition used a newly randomized original
scene, and the two alternatives were derived from it.
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To systematically assess the impact of different interaction and
visualization techniques, we varied three independent variables:

Interaction Modality We varied the way participants acti-
vated and deactivated the display of a varied scene between
button and gesture. Buttons were positioned between
hand and elbow joints. Each button was labeled to indicate
the corresponding scene. For the gesture, swiping forward or
backward switched to the next or previous scene. A forearm
display indicated the selected time point. The sequence was
fixed (original scene - alternative scene 1 - alternative scene
2), with no cyclic navigation.

Visualization Technique - Area of Effect Wevaried theway
the alternative scene was presented with two levels. In the
FullScene case, the alternative scene took over the partici-
pant’s full field of view. In the Flashlight case, we used the
metaphor of a flashlight held in the hand. The cone of light
(15-degree angle) from the flashlight serves as a portal into
the second scene, allowing users to selectively choose the
area of interest.

Opacity As a final independent variable, we varied the blend-
ing in the area defined by the visualization technique be-
tween a semi-Transparent view, inwhich the original scene
and the selected varied scene were visible at the same time,
and an opaqe view, in which only the original or the alter-
native scene was visible.

We employed a repeated-measures design, resulting in a total
of 2𝑥2𝑥2 = 8 conditions (compare Figure 1), consisting of 4 visual-
izations and 2 interaction techniques. To avoid learning effects, we
counterbalanced the order of conditions in a balanced Latin square
design with 8 levels. For each condition, we measured the number
of correctly and incorrectly identified differences as measures for
the accuracy of our participants. Further, we assessed the usabil-
ity of the system using the System Usability Scale (SUS), and the
perceived workload using the NASA Task Load Index (NASA-TLX).

3.1 Apparatus

The study was developed using Unity, leveraging the Meta All-in-
One SDK for hand tracking and interaction. The virtual environ-
ment was a realistic office setting, featuring 40 spawn points for
item placement. The layout of the office—complete with desks and
shelves remained constant across conditions, but specific objects
like plants and decorations were altered between time points. This
ensured logical and varied object placement. Spawn points were
categorized (e.g., small items, large items, floor objects) to maintain
realism, with items being randomly selected and placed within their
category. Buttons and Gestures were implemented with inverse
kinematics on the left forearm via the Unity humanoid model. Only
the hands and arms were visible to participants. Visualizations were
designed by employing various methods of superposition, where
objects from multiple time points are displayed simultaneously.

3.2 Procedure

Participants signed a consent form and completed a demographic
questionnaire. They were briefed on the study’s objective to iden-
tify differences between time points in VR. This was followed by
two tutorials on the interaction methods (button or gesture) and

on the visualization techniques (Transparent, Flashlight, Flashlight
Transparent). Participants then completed three 45-second runs
per condition and interaction combination, identifying and cor-
recting up to 30 possible differences per run. When participants
identified a difference, they used a pinch gesture to interact with
the element, causing the difference to disappear and be replaced by
the corresponding object from the original scene. This prevented
participants from selecting the same difference multiple times. The
time limit prevented excessive searching and potential frustration
over missing final differences. The number of differences exceeded
what could realistically be found in the given time, ensuring en-
gagement and a consistent challenge and preventing ceiling effects.
After each trial, they were asked to complete the System Usability
Scale (SUS) and NASA Task LoadIndex (NASA-TLX) assessments
and answer a question about Immersion. Finally, we collected qual-
itative feedback in a semi-structured interview. Each participant’s
session lasted around 30 minutes.

3.3 Participants

A total of 24 participants took part in the study, with an average
age of 26.33 years (13 male, 11 female). The sample consisted of
individuals from diverse occupational and educational backgrounds.
Half of the participants had prior VR experience, using it a few times
a year, while the other half were novices. All participants provided
the necessary consent before taking part in the study.

3.4 Analysis

We computed the RAW TLX score as proposed by Hart [8]. For anal-
ysis, we fitted linear mixed models (by REML) with our independent
variables as fixed effects and the individual participant as a random
effects. We assessed significance using Type III Wald chi-square
tests. Where we found significant main or interaction effects we
did Post-Hoc-Tests and applied the Bonferroni method for p-value
adjustments. For non-parametric data (SUS), we first performed a
aligned rank transformation according to Wobbrock [19], followed
by the same linear regression models and significance tests. We
fitted Poisson regression models and assessed significance using
Type III Wald chi-square tests to analyze count data. Significant
main or interaction effects were followed by post hoc tests with
Bonferroni-adjusted p-values.

4 Findings

This section outlines the findings of our controlled experiment.

4.1 Raw TLX

Evaluating the rawTLX,we found values ranging from𝑀 = 37.5, 𝑆𝐷 =

10.5 (Button-FullScene-Transparent) to 𝑀 = 46.7, 𝑆𝐷 = 12.8
(Gesture-FullScene-Opaqe) (see Figure 2a). Our analysis on the
TLX scores identified significant main effects of theArea of Effect
(𝜒2 = 7.15, 𝑝 < 0.01), but the post-hoc tests revealed no significant
differences for the Flashlight and FullScene conditions.

We found a significant effect for the interaction between the
Area of Effect and Opacity factors (𝜒2 = 10.22, 𝑝 < 0.01).
However, there were no significant main effects for interaction
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Figure 2: The mean results of our user study’s log and count data. Error bars depict standard deviation.

modality or any other interaction effects. In the FullScene condi-
tion, FullScene-Opaqe had a higher TLX score than FullScene-
Transparent. However, no significant difference was found be-
tween Flashlight-Opaqe and Flashlight-Transparent. While
FullScene-Opaqe had significantly higher scores compared to
Flashlight-Opaqe (𝑝 < 0.001), Flashlight-Transparent had
significantly higher scores than FullScene-Transparent (𝑝 <

0.001).

4.2 SUS

Evaluating the SUS scores, we found values ranging from 𝑀 =

64.4, 𝑆𝐷 = 23.8 (Gesture-FullScene-Opaqe ) to𝑀 = 91.5, 𝑆𝐷 =

8.27 (Button-FullScene-Transparent) (see Figure 2b). Signifi-
cance testing revealed a significant main effect of Input Modality
(𝐹 (1, 161) = 16.40, 𝑝 < .001) on SUS scores, while no significant
main effects were found for the other factors. The post-hoc tests
revealed significantly higher SUS scores for Button compared
to Gesture (𝑝 < 0.001). We found a significant effect for the
interaction between the Input Modality and Area of Effect
factors (𝐹 (1, 161) = 3.65, 𝑝 < 0.05). Button-Opaqe had a sig-
nificantly higher SUS score than Gesture-Opaqe (𝑝 < 0.001),
but no significant difference was found Button-Transparent
and Gesture-Transparent. We also found a significant main ef-
fect of the interaction between the factors Area of Effect and
Opacity (𝐹 (1.161) = 74.10, 𝑝 < 0.001). Post-Hoc tests revealed,
that when looking at the Flashlight factor, Flashlight-Opaqe
had significantly higher scores than Flashlight-Transparent
(𝑝 < 0.001), while for FullScene, FullScene-Transparent had
significantly higher scores than FullScene-Opaqe (𝑝 < 0.001).
Additionally, FullScene-Transparent scored significantly higher
than Flashlight-Transparent (𝑝 < 0.001), whereas Flashlight-
Opaqe scored significantly higher than FullScene-Opaqe (𝑝 <

0.001). Specifically, the Flashlight visualization worked better

when paired with the Opaqe condition, while the FullScene vi-
sualization performed better when paired with the Transparent
condition.

4.3 Scene Changes

Evaluating the number of scene changes, we found values ranging
from𝑀 = 0.9, 𝑆𝐷 = 1.60 (Button-Flashlight-Transparent) to
𝑀 = 12.7, 𝑆𝐷 = 5.53 (Button-FullScene-Opaqe) (see Figure 2c).
We found significant differences for the interaction modality
(𝜒2 = 15.20, 𝑝 < 0.001) and Area of Effect (𝜒2 = 436.95, 𝑝 <

0.001) factors. Post-hoc tests revealed significantly higher numbers
of scene switches forGesture than for Buttons (𝑝 < 0.001). Flash-
light had a significantly lower numbers of scene switches than
FullScene (𝑝 < 0.001). We found a significant main effect of the
interaction between Modality and Area of Effect factors (𝜒2 =
14.67, 𝑝 < 0.001). For both Flashlight-Gesture and FullScene-
Gesture, there were significantly more switches compared to
Flashlight-Button and FullScene-Button (𝑝 < .001). We also
found a significant main effect of the interaction between Area
of Effect and Opacity (𝜒2 = 86.87, 𝑝 < 0.001). Post-Hoc tests
revealed significant differences for most comparisons (𝑝 < .001), ex-
cept between Flashlight-Opaqe and Flashlight-Transparent.
Over all, there were more switches for FullScene-Opaqe and
FullScene-Transparent than for Flashlight-Opaqe and Flashlight-
Transparent (𝑝 < .001).

4.4 Rate of Correctly and Falsely Identified

Differences

Evaluating the rate of correctly identified differences, a value of
1 represents 100% of the total possible differences (30), meaning
all differences were correctly identified. We found values ranging
from 𝑀 = 0.25, 𝑆𝐷 = 0.14 (Gesture-FullScene-Opaqe) to 𝑀 =

0.71, 𝑆𝐷 = 0.21 (Button-FullScene-Transparent) (see Figure 2d).
We found a significant interaction effect between the Area of
Effect and Opacity factors (𝜒2 = 6.2811, 𝑝 < 0.05), while all main
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effects and further interactions were not significant. Post-hoc tests
showed that FullScene-Transparent had a significantly higher
percentage of correctly identified objects compared to FullScene-
Opaqe (𝑝 < 0.001) and Flashlight-Transparent(𝑝 < 0.05). No
significant difference was found for other combinations.

Evaluating the number of wrongly identified objects, we found
values ranging from 𝑀 = 2.43, 𝑆𝐷 = 2.53 (Gesture-Flashlight-
Opaqe) to𝑀 = 6.28, 𝑆𝐷 = 4.21 (Button-Flashlight-Transparent)
(see Figure 2e). The analysis showed a significant interaction effect
between theArea of Effect andOpacity factors (𝜒2 = 6.2811, 𝑝 <

0.05), while all main effects and further interactions were not sig-
nificant. Post-hoc tests revealed a significantly lower number of
wrongly identified objects for FullScene-Transparent than for
FullScene-Opaqe(𝑝 < 0.001) and Flashlight-Transparent
(𝑝 < 0.05). No significant difference was found for other combina-
tions.

4.5 Semi Structured Interview

All participants said that participating in the study "was an inter-
esting experience" (P7) or that "It was very fun" (P9). Participants
found the button interaction more intuitive and reliable than the
swipe gesture ("The buttons are more convenient and easier to
use." - P8), while the swipe gesture was perceived as inconsistent or
harder to use than the buttons ("Sometimes when I swiped on the
interactions it didn’t register quite right" - P12). Certain combina-
tions of interactions and visualizations were favored, particularly
the Flashlight-Opaqe and FullScene-Transparent visualiza-
tions paired with the Button interaction. The Flashlight-Opaqe
visualization was preferred over Flashlight-Transparent, as "the
half-transparent [...] flashlights were a bit more difficult" (P18). The
Flashlight-Opaqe visualization was appreciated for its ease and
enjoyment in finding differences, and "was very easy to become
familiar with and fun to use" (P22). The combination of FullScene-
Transparent helped avoid repeated scanning, with Participant 17
stating, "You saw all of the differences right away, so it was just
a matter of clicking on them." Targeting small or hidden objects
seemed to be challenging.

5 Discussion

5.1 Buttons increase usability compared to

gestures, at least for a small number of

scenes.

Our results indicate that buttons outperformed gestures in terms of
usability, as reflected by higher SUS scores, fewer scene switches,
and participant feedback. We observed that some participants ex-
perienced unreliabilities with the gesture system, which likely con-
tributed to their confusion and the increased number of (maybe
accidental) scene switches in the gesture condition. These issues
may stem from challenges in understanding the gesture interface
or problems with our implementation, both of which could dis-
rupt the overall user experience. Interestingly, we found no signifi-
cant differences in NASA-TLX scores between the two interaction
methods. This indicates that while gestures were less reliable and
intuitive, they were not necessarily more mentally or physically
demanding for participants. It is important to note that this study

compared interaction methods across only three scenes, and the
results might differ in scenarios involving a larger number of scenes.
With an increasing number of scenes, the physical space available
for buttons may become a limiting factor, potentially impacting
their usability. This highlights the potential scalability advantage of
gesture-based systems, provided their reliability and intuitiveness
can be improved. The better performance of buttons highlights the
importance of designing intuitive and reliable interaction meth-
ods. Difficulties with gestures emphasize the need to improve their
responsiveness and clarity.

5.2 Full-Scene provides a more immediate

overview, while Flashlight helps to better

distinguish details.

There was no significant difference between the Flashlight and
FullScene conditions for the TLX or SUS scores. The Flashlight
condition was perceived as engaging and enjoyable, which is bene-
ficial because it helps ensure users enjoy using the system. However,
the FullScene-Transparent performed better than the Flashlight-
Transparent condition. Overlaying multiple pieces of information
can create visual clutter, as seen in 2D environments, but here,
FullScene-Transparent still showed a significant improvement
compared to the baseline (FullScene-Opaqe). The FullScene-
Transparent visualization can provide an immediate overview
without the need to scan the room "by hand", while the Flashlight
conditions offer a visual cue when quickly hovering over an object
and moving away, which might help users to notice changes, as
evidenced by the good performance of Flashlight-Opaqe. The
Flashlight conditions resulted in fewer scene switches compared
to the FullScene conditions, which may be explained by this visual
cue. Both conditions (FullScene and Flashlight) offer different
advantages, and there is no clear better option when considering
this variable alone.

5.3 Opacity has an effect on the Area of Effect

Visualizations

Results indicated that the Opacity has a significant impact when
paired with the Area of Effect variable. In general, FullScene-
Opaqe resulted in themost scene changes, higherworkload (NASA-
TLX), lower SUS scores, and fewer correctly identified differences
compared to FullScene-Transparent. This was expected and is
likely due to the need for constant scene switching without addi-
tional assistance, with the FullScene-Opaqe condition serving
as a baseline. Pairing FullScene with Transparent improves the
experience, mitigates many of the drawbacks, and leads to fewer
errors. These results suggest that while interaction modality did
not affect the identification accuracy, the combination of the Area
of Effect and Opacity factors had a significant impact on perfor-
mance. The effect of the Area of Effect dimensions appears to be
influenced by the level of transparency (Opacity). While pairing
the Transparent condition with the FullScene condition led to
improvements, this was not the case for the Flashlight condition.
The combination was perceived as unpleasant and performed worse.
Therefore, the effect does not carry over to the Flashlight condi-
tion. This may be because the overall intensity of visual changes
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when hovering over objects is more pronounced in the Flashlight-
Opaqe visualization, which is why the effect does not transfer to
the Flashlight-Transparent condition. Although Flashlight-
Transparent did not perform as effectively, it still resulted in more
correctly identified differences compared to the condition with no
support (FullScene-Opaqe).

5.4 Limitations and Future Work

Future work should refine gesture interactions for better accuracy
and reliability. It would be valuable to explore the scalability of
both button and gesture-based interactions in more complex en-
vironments and with larger datasets. Furthermore, there is room
to investigate the effects of varying levels of transparency and
blending in combination with a different-sized area of effect, which
could help identify the most optimal configurations for improving
performance, particularly in complex scenarios. Improving visual
feedback, such as experimenting with more pronounced visual ef-
fects, could help users better identify changes, improving accuracy
and user experience. The small number of scenes tested in our ex-
periment may not fully represent the challenges in more dynamic
environments. Expanding the number of scenes would allow us to
assess interaction methods in more varied and complex contexts.
Lastly, this study focused on button and gesture interactions, but
exploring other modalities, like voice commands or haptic feedback,
could provide further insights.

6 Conclusion

We conducted a controlled experiment to explore the impact of
different interaction and visualization techniques on the accuracy,
usability, and perceived workload of spotting differences between
scenes in VR.We varied the three independent variables—Interaction
Modality, Area of Effect, and Opacity —resulting in 8 conditions.
Our results showed that button interactions outperformed gestures
in usability, at least for a small number of scenes. The FullScene
provides a more immediate overview, while the Flashlight view
helps to better distinguish details. Opacity influenced performance
when paired with Area of Effect. While transparency improved
the experience in the FullScene condition, it did not translate well
to the Flashlight condition. Future work should focus on refining
gesture interactions, exploring the scalability of both modalities
in larger environments, and investigating the effects of different
levels of blending. Expanding the number of scenes and incorpo-
rating other feedback mechanisms could further enhance the user
experience in immersive VR systems.
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